Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal Feb 2013

Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal

Faculty Publications

No abstract provided.


Acceptor Levels In Gase:In Crystals Investigated By Deep-Level Transient Spectroscopy And Photoluminescence, Y. Cui, R. Dupere, A. Burger, D. Johnstone, K. C. Mandal, S. A. Payne Jan 2008

Acceptor Levels In Gase:In Crystals Investigated By Deep-Level Transient Spectroscopy And Photoluminescence, Y. Cui, R. Dupere, A. Burger, D. Johnstone, K. C. Mandal, S. A. Payne

Faculty Publications

No abstract provided.


Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal Mar 2007

Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal

Faculty Publications

No abstract provided.


Accumulation Hole Layer In P-Gan/Algan Heterostructures, M. S. Shur, A. D. Bykhovski, R. Gaska, J. W. Yang, Grigory Simin, M. A. Khan May 2000

Accumulation Hole Layer In P-Gan/Algan Heterostructures, M. S. Shur, A. D. Bykhovski, R. Gaska, J. W. Yang, Grigory Simin, M. A. Khan

Faculty Publications

We present the results on piezoelectric and pyroelectricdoping in AlGaN-on-GaN and GaN-on-AlGaN heterostructures and demonstrate p-GaN/AlGaN structures with accumulation hole layer. Our results indicate that polarization charge can induce up to 5×1013 cm−2 holes at the AlGaN/GaN heterointerfaces. We show that the transition from three-dimensional (3D) to two-dimensional (2D) hole gas can be only achieved for hole sheet densities on the order of 1013 cm−2 or higher. At lower densities, only 3D-hole accumulation layer may exist. These results suggest that a piezoelectrically induced 2D-hole gas can be used for the reduction of the base spreading resistance …


Piezoelectric Doping In Alingan/Gan Heterostructures, M. Asif Khan, J. W. Yang, Grigory Simin, R. Gaska, M. S. Shur, A. D. Bykovski Nov 1999

Piezoelectric Doping In Alingan/Gan Heterostructures, M. Asif Khan, J. W. Yang, Grigory Simin, R. Gaska, M. S. Shur, A. D. Bykovski

Faculty Publications

We report on the piezoelectricdoping and two-dimensional (2D) electron mobility in AlInGaN/GaN heterostructures grown on 6H–SiC substrates. The contribution of piezoelectricdoping to the sheet electron density was determined using an In-controlled built-in strain-modulation technique. Our results demonstrate that in strained AlGaN/GaN heterostructures, the piezoelectric field generates at least 50% of the 2D electrons. The strain modulation changes the potential distribution at the heterointerface, which, in turn, strongly affects the 2D electron mobility, especially at cryogenic temperatures. The obtained results demonstrate the potential of strain engineering and piezoelectricdoping for GaN-based electronics.


Supralinear Photoconductivity Of Copper Doped Semi-Insulating Gallium Arsenide, K. H. Schoenbach, R. P. Joshi, F. Peterkin, R. L. Druce Jan 1995

Supralinear Photoconductivity Of Copper Doped Semi-Insulating Gallium Arsenide, K. H. Schoenbach, R. P. Joshi, F. Peterkin, R. L. Druce

Bioelectrics Publications

We report on the intensity dependent supralinear photoconductivity in GaAs:Si:Cu material. The results of our measurements show that the effective carrier lifetime can change over two orders of magnitude with variations in the intensity of the optical excitation. A threshold intensity level has been observed and can be related to the occupancy of the deep copper level. Numerical simulations have also been carried out to analyze the trapping dynamics. The intensity dependent lifetimes obtained from the simulations match the experimental data very well. Finally, based on the nonlinear intensity dependence of the effective lifetimes, a possible low‐energy phototransistor application for …


Bistable Behavior Of The Dark Current In Copper-Doped Semi-Insulating Gallium Arsenide, R. A. Roush, K. H. Schoenbach, R. P. Brinkmann Jan 1992

Bistable Behavior Of The Dark Current In Copper-Doped Semi-Insulating Gallium Arsenide, R. A. Roush, K. H. Schoenbach, R. P. Brinkmann

Bioelectrics Publications

The dark current characteristics of gallium arsenide doped with silicon and compensated with diffused copper were found to have a pronounced region of current controlled negative differential conductivity (ndc) similar to the characteristics of a thyristor. The resistivity of the semi‐insulating semiconductor was measured to be 105 Ω cm for applied voltages up to 2.2 kV, which corresponds to an average electric field of 38 kV/cm. At higher voltages, a transition to a stable high current state was observed with a current rate of rise exceeding 1011 A/s. There is evidence of the formation of at least one …