Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Electron-Beam Patterning Of Teflon Af For Surface Plasmon Resonance Sensing, Mansoor A. Sultan Jan 2015

Electron-Beam Patterning Of Teflon Af For Surface Plasmon Resonance Sensing, Mansoor A. Sultan

Theses and Dissertations--Electrical and Computer Engineering

Variable pressure electron beam etching and lithography for Teflon AF has been demonstrated. The relation between dose and etching depth is tested under high vacuum and water vapor. High resolution structures as small as 75 nm half-pitch have been resolved. Several simulation tools were tested for surface plasmon excitation. Grating based dual mode surface plasmon excitation has been shown numerically and experimentally.


Average-Value Modeling Of Hysteresis Current Control In Power Electronics, Hanling Chen Jan 2015

Average-Value Modeling Of Hysteresis Current Control In Power Electronics, Hanling Chen

Theses and Dissertations--Electrical and Computer Engineering

Hysteresis current control has been widely used in power electronics with the advantages of fast dynamic response under parameter, line and load variation and ensured stability. However, a main disadvantage of hysteresis current control is the uncertain and varying switching frequency which makes it difficult to form an average-value model. The changing switching frequency and unspecified switching duty cycle make conventional average-value models based on PWM control difficult to apply directly to converters that are controlled by hysteresis current control.

In this work, a new method for average-value modeling of hysteresis current control in boost converters, three-phase inverters, and brushless …


Multifrequency Averaging Of Hysteresis-Current-Controlled Dc-Dc Converters, Yingying Liu Jan 2015

Multifrequency Averaging Of Hysteresis-Current-Controlled Dc-Dc Converters, Yingying Liu

Theses and Dissertations--Electrical and Computer Engineering

Multifrequency averaging is one of the widely used modeling and simulation techniques today for the analysis and design of power electronic systems. This technique is capable of providing the average behavior as well as the ripple behavior of power electronic systems. Hysteresis current control has fast response and internal current stability through controlling switches to maintain the current within a given hysteresis band of a given current command. However the state space variables in a hysteresis controlled system cannot be directly approached by multifrequency averaging method because of time varing switching frequency. In this thesis, a method of applying multifrequency …


Fault Section Identification For Power Distribution Systems Using Online Measurements, Jie Chen Jan 2015

Fault Section Identification For Power Distribution Systems Using Online Measurements, Jie Chen

Theses and Dissertations--Electrical and Computer Engineering

Fault location is very important for distribution systems, and quickly identifying the fault and restoring the system can help reduce the outage time and make the system more reliable. In this thesis, a method for locating faults on distribution systems is introduced to quickly identify the faulted feeder sections by using the overcurrent information from the switches in the system. Fuzzy logic is utilized. The proposed method can quickly and accurately locate faulted sections with different fault locations, fault types and fault resistances. The method is applicable to cases with single-faults or multi-faults, and is applicable to networks with multi-sources. …


Explorations For Efficient Reversible Barrel Shifters And Their Mappings In Qca Nanocomputing, Ke Chen Jan 2015

Explorations For Efficient Reversible Barrel Shifters And Their Mappings In Qca Nanocomputing, Ke Chen

Theses and Dissertations--Electrical and Computer Engineering

This thesis is based on promising computing paradigm of reversible logic which generates unique outputs out of the inputs and. Reversible logic circuits maintain one-to-one mapping inside of the inputs and the outputs. Compared to the traditional irreversible computation, reversible logic circuit has the advantage that it successfully avoids the information loss during computations. Also, reversible logic is useful to design ultra-low-power nanocomputing circuits, circuits for quantum computing, and the nanocircuits that are testable in nature. Reversible computing circuits require the ancilla inputs and the garbage outputs. Ancilla input is the constant input in reversible circuits. Garbage output is the …


Nanostructured Semiconductor Device Design In Solar Cells, Hongmei Dang Jan 2015

Nanostructured Semiconductor Device Design In Solar Cells, Hongmei Dang

Theses and Dissertations--Electrical and Computer Engineering

We demonstrate the use of embedded CdS nanowires in improving spectral transmission loss and the low mechanical and electrical robustness of planar CdS window layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides an evidence for improving light transmission in the window layer and enhancing absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield the …