Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Engineering

Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas Nov 2022

Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas

LSU Doctoral Dissertations

Molecular detection techniques have huge potential in clinical environments. In addition to many other molecular detection techniques, endoscopic Raman spectroscopy has great ability in terms of minimal invasiveness and real-time spectra acquisition. However, Raman Effect is low in sensitivity, limiting the application. Surface-Enhanced Raman Scattering (SERS), addresses this limitation. SERS brings rough nano-metallic surfaces in contact with specimen molecules which enormously enhances Raman signals. This provides Raman spectroscopy with immense capabilities for diverse fields of applications.

Generally, in clinical probe applications, the spectrometer is brought near the target molecules for detection. Typically, optical fibers are used to couple spectrometers to …


A Field-Deployable Quartz Crystal Microbalance System For Gas Detection, Jongyoon Park Nov 2022

A Field-Deployable Quartz Crystal Microbalance System For Gas Detection, Jongyoon Park

LSU Doctoral Dissertations

Quartz crystal microbalance (QCM) has been widely studied as a mass sensing technique in laboratory environments and has shown a wide range of industrial applications such as food quality control, various forms of chemical detection, and biomolecular recognition under gas phase as well as liquid phase media. The construction of multi-sensor arrays combined with special sensor coatings enables multiple analyte detections and discrimination of multi-analyte along with statistical analysis. Despite the great sensing capabilities of QCM and growing interest in practical applications beyond the laboratory setup, most QCM studies are still performed in laboratory settings with benchtop QCM instruments. Therefore, …


Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi Jul 2022

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …


Novel Platforms For Large-Scale Adherent Culture Of Mammalian Cells, Ashkan Yekrangsafakar Apr 2022

Novel Platforms For Large-Scale Adherent Culture Of Mammalian Cells, Ashkan Yekrangsafakar

LSU Doctoral Dissertations

With recent advances in biotechnology, there is a strong and urgent need for robust platforms to culture mammalian cells on a large scale to produce biopharmaceuticals. To this end, various bioreactors have been developed over the past decades, but their capacity and efficiency are often limited by insufficient mass transfer rate and excessive shear stress. In this work, multiple novel bioreactors for the large-scale adherent culture of anchorage-dependent cells were developed.

Hollow MicroCarriers (HMC) was developed as an alternative solution for the microcarrier-based culture system in a stirred-tank bioreactor. In the conventional microcarrier technique, cells are exposed to the harmful …


Error Prevention In Sensors And Sensor Systems, Pedro J. Chacon Dominguez May 2021

Error Prevention In Sensors And Sensor Systems, Pedro J. Chacon Dominguez

LSU Doctoral Dissertations

Achievements in all fields of engineering and fabrication methods have led towards optimization and integration of multiple sensing devices into a concise system. These advances have caused significant innovation in various commercial, industrial, and research efforts. Integrations of subsystems have important applications for sensor systems in particular. The need for reporting and real time awareness of a device’s condition and surroundings have led to sensor systems being implemented in a wide variety of fields. From environmental sensors for agriculture, to object characterization and biomedical sensing, the application for sensor systems has impacted all modern facets of innovation. With these innovations, …


A Comprehensive Study On Printed Circuit Board Backdoor Coupling In High Intensity Radiated Fields Environments, Ryan Patrick Tortorich May 2021

A Comprehensive Study On Printed Circuit Board Backdoor Coupling In High Intensity Radiated Fields Environments, Ryan Patrick Tortorich

LSU Doctoral Dissertations

Due to the prevalence of unintentional electromagnetic interference (EMI) and the growth of intentional electromagnetic interference (IEMI) or high power microwave (HPM) sources, it is now more important than ever to understand how electronic systems are affected by high intensity radiated fields (HIRF) environments. Both historic events and experimental testing have demonstrated that HIRF environments are capable of disrupting and potentially damaging critical systems including but not limited to civil and military aircraft, industrial control systems (ICS), and internet of things (IoT) devices. However, there is limited understanding on the complex electromagnetic interactions that lead to such effects. This study …


Led-Based Optical Sensing Platforms For Multi-Analyte Detection, Youngho Shin Mar 2021

Led-Based Optical Sensing Platforms For Multi-Analyte Detection, Youngho Shin

LSU Doctoral Dissertations

Real-time monitoring of phytoplankton groups provides important information about aquatic ecological states, nutrient abundance, and water pollution. A rapid and accurate method for monitoring phytoplankton in water is commonly performed by detecting fluorescence emission from the plankton; however, commercially available portable fluorescence sensors are still expensive, bulky, and limited in functions, such as lacking the capability of selectively detecting multiple phytoplankton groups. In this regard, a low-cost and portable fluorometer platform for phytoplankton detection was developed in order to address the issues that current portable fluorometers have.

This dissertation has four main goals: (1) perform a study on fluorescence measurement …


Channel Estimation In Multi-User Massive Mimo Systems By Expectation Propagation Based Algorithms, Mohammed Rashid Mar 2021

Channel Estimation In Multi-User Massive Mimo Systems By Expectation Propagation Based Algorithms, Mohammed Rashid

LSU Doctoral Dissertations

Massive multiple input multiple output (MIMO) technology uses large antenna arrays with tens or hundreds of antennas at the base station (BS) to achieve high spectral efficiency, high diversity, and high capacity. These benefits, however, rely on obtaining accurate channel state information (CSI) at the receiver for both uplink and downlink channels. Traditionally, pilot sequences are transmitted and used at the receiver to estimate the CSI. Since the length of the pilot sequences scale with the number of transmit antennas, for massive MIMO systems downlink channel estimation requires long pilot sequences resulting in reduced spectral efficiency and the so-called pilot …


Intelligent Data-Driven Energy Flow Controllers For Renewable Energy And Electrified Transportation Systems, Juan Rafael Nunez Forestieri Nov 2020

Intelligent Data-Driven Energy Flow Controllers For Renewable Energy And Electrified Transportation Systems, Juan Rafael Nunez Forestieri

LSU Doctoral Dissertations

In recent years, large scale deployments of electrical energy generation using renewable sources (RES) such as wind, solar and ocean wave power, along with more sustainable means of transformation have emerged in response to different initiatives oriented toward reducing greenhouse gas emissions. Strategies facilitating the integration of renewable generation into the grid and electric propulsion in transportation systems are proposed in this work.

Chapter 2 investigates the grid-connected operation of a wave energy converter (WEC) along with a hybrid supercapacitor/undersea energy storage system (HESS). A combined sizing and energy management strategy (EMS) based on reinforcement learning (RL) is proposed. Comparisons …


Fabrication And Application Of Flexible Sensors, Tallis Huther Da Costa Aug 2020

Fabrication And Application Of Flexible Sensors, Tallis Huther Da Costa

LSU Doctoral Dissertations

A transfer printing method was developed to transfer carbon nanotubes (CNTs) from polyethylene terephthalate (PET) film to poly(dimethyl siloxane) (PDMS) polymer. Carbon nanotubes are composed of carbon atoms arranged in a honeycomb lattice structure, which are electrically conducting. When embedded in a nonconducting polymer, carbon nanotubes impart electrical conductivity to the nanocomposite, thus forming a nanocomposite that has potential applications in highly sensitive strain and pressure sensors. Several printing methods have been studied to deposit carbon nanotubes onto PDMS, including inkjet printing. Inkjet printing is a desirable deposition method since it is low-cost, simple, and allows the processing of aqueous-based …


Neurostimulator With Waveforms Inspired By Nature For Wearable Electro-Acupuncture, Jose Aquiles Parodi Amaya Jun 2019

Neurostimulator With Waveforms Inspired By Nature For Wearable Electro-Acupuncture, Jose Aquiles Parodi Amaya

LSU Doctoral Dissertations

The work presented here has 3 goals: establish the need for novel neurostimulation waveform solutions through a literature review, develop a neurostimulation pulse generator, and verify the operation of the device for neurostimulation applications.

The literature review discusses the importance of stimulation waveforms on the outcomes of neurostimulation, and proposes new directions for neurostimulation research that would help in improving the reproducibility and comparability between studies.

The pulse generator circuit is then described that generates signals inspired by the shape of excitatory or inhibitory post-synaptic potentials (EPSP, IPSP). The circuit analytical equations are presented, and the effects of the circuit …


Cost Effective, Highly Efficient Wireless Power Transfer Systems For Ev Battery Charging, Amir Masoud Bozorgi Jun 2019

Cost Effective, Highly Efficient Wireless Power Transfer Systems For Ev Battery Charging, Amir Masoud Bozorgi

LSU Doctoral Dissertations

The impact of changing inner diameter of wireless power transfer (WPT) coils on coupling coefficient is studied. It is demonstrated that at a certain outer and inner coil diameter, turn space variation has minor effect on the coupling coefficient. Next, two compensation networks, namely primary LCC and secondary LCC, which offer load-independent voltage transfer ratio and zero voltage switching for WPT, are presented. For both compensation networks, the condition for having zero voltage switching operation are derived. In addition, load-independent voltage transfer ratio (VTR) frequencies are obtained and VTR at each frequency is derived. Then, required equations for calculation of …


Developing An Optomechanical Approach For Characterizing Mechanical Properties Of Single Adherent Cells, Ali Mehrnezhad May 2019

Developing An Optomechanical Approach For Characterizing Mechanical Properties Of Single Adherent Cells, Ali Mehrnezhad

LSU Doctoral Dissertations

Mechanical properties of a cell reflect its biological and pathological conditions including cellular disorders and fundamental cellular processes such as cell division and differentiation. There have been active research efforts to develop high-throughput platforms to mechanically characterize single cells. Yet, many of these research efforts are focused on suspended cells and use a flow-through configuration. Therefore, adherent cells are detached prior to the characterization, which seriously perturbs the cellular conditions. Also, methods for adherent cells are limited in their throughput.

My study is aimed to fill the technical gap in the field of single cell analysis, which is a high-throughput …


Optimal And Efficient Decision-Making For Power System Expansion Planning, Mahdi Mehrtash May 2019

Optimal And Efficient Decision-Making For Power System Expansion Planning, Mahdi Mehrtash

LSU Doctoral Dissertations

A typical power system consists of three major sectors: generation, transmission, and distribution. Due to ever increasing electricity consumption and aging of the existing components, generation, transmission, and distribution systems and equipment must be analyzed frequently and if needed be replaced and/or expanded timely. By definition, the process of power system expansion planning aims to decide on new as well as upgrading existing system components in order to adequately satisfy the load for a foreseen future.

In this dissertation, multiple economically optimal and computationally efficient methods are proposed for expanding power generation, transmission, and distribution systems. First, a computationally efficient …


Thermal And Mechanical Energy Harvesting Using Lead Sulfide Colloidal Quantum Dots, Taher Ghomian Oct 2018

Thermal And Mechanical Energy Harvesting Using Lead Sulfide Colloidal Quantum Dots, Taher Ghomian

LSU Doctoral Dissertations

The human body is an abundant source of energy in the form of heat and mechanical movement. The ability to harvest this energy can be useful for supplying low-consumption wearable and implantable devices. Thermoelectric materials are usually used to harvest human body heat for wearable devices; however, thermoelectric generators require temperature gradient across the device to perform appropriately. Since they need to attach to the heat source to absorb the heat, temperature equalization decreases their efficiencies. Moreover, the electrostatic energy harvester, working based on the variable capacitor structure, is the most compatible candidate for harvesting low-frequency-movement of the human body. …


Techniques Of Energy-Efficient Vlsi Chip Design For High-Performance Computing, Zhou Zhao Sep 2018

Techniques Of Energy-Efficient Vlsi Chip Design For High-Performance Computing, Zhou Zhao

LSU Doctoral Dissertations

How to implement quality computing with the limited power budget is the key factor to move very large scale integration (VLSI) chip design forward. This work introduces various techniques of low power VLSI design used for state of art computing. From the viewpoint of power supply, conventional in-chip voltage regulators based on analog blocks bring the large overhead of both power and area to computational chips. Motivated by this, a digital based switchable pin method to dynamically regulate power at low circuit cost has been proposed to make computing to be executed with a stable voltage supply. For one of …


Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik May 2018

Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik

LSU Doctoral Dissertations

This work presents both a feasibility study and an investigation into the voltage-controlled spray deposition of different nanoparticles, namely, carbon nanotubes (CNTs), as well as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) from the transition metal dichalcogenides (TMDCs) family of materials. The study considers five different types of substrates as per their potential application to next-generation device electronics. The substrates selected for this research were: 1) aluminum as a conducting substrate, 2) silicon as a semiconducting substrate, 3) glass, silicon dioxide (SiO2), and syndiotactic poly methyl methacrylate (syndiotactic PMMA) as insulating substrates.

Since the …


Image Processing Applications In Real Life: 2d Fragmented Image And Document Reassembly And Frequency Division Multiplexed Imaging, Houman Kamran Habibkhani Apr 2018

Image Processing Applications In Real Life: 2d Fragmented Image And Document Reassembly And Frequency Division Multiplexed Imaging, Houman Kamran Habibkhani

LSU Doctoral Dissertations

In this era of modern technology, image processing is one the most studied disciplines of signal processing and its applications can be found in every aspect of our daily life. In this work three main applications for image processing has been studied.

In chapter 1, frequency division multiplexed imaging (FDMI), a novel idea in the field of computational photography, has been introduced. Using FDMI, multiple images are captured simultaneously in a single shot and can later be extracted from the multiplexed image. This is achieved by spatially modulating the images so that they are placed at different locations in the …


Modeling Of Thermally Aware Carbon Nanotube And Graphene Based Post Cmos Vlsi Interconnect, K M Mohsin Nov 2017

Modeling Of Thermally Aware Carbon Nanotube And Graphene Based Post Cmos Vlsi Interconnect, K M Mohsin

LSU Doctoral Dissertations

This work studies various emerging reduced dimensional materials for very large-scale integration (VLSI) interconnects. The prime motivation of this work is to find an alternative to the existing Cu-based interconnect for post-CMOS technology nodes with an emphasis on thermal stability. Starting from the material modeling, this work includes material characterization, exploration of electronic properties, vibrational properties and to analyze performance as a VLSI interconnect. Using state of the art density functional theories (DFT) one-dimensional and two-dimensional materials were designed for exploring their electronic structures, transport properties and their circuit behaviors. Primarily carbon nanotube (CNT), graphene and graphene/copper based interconnects were …