Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Floating-Gate Design And Linearization For Reconfigurable Analog Signal Processing, Steven Michael Andryzcik Ii Jan 2021

Floating-Gate Design And Linearization For Reconfigurable Analog Signal Processing, Steven Michael Andryzcik Ii

Graduate Theses, Dissertations, and Problem Reports

Analog and mixed-signal integrated circuits have found a place in modern electronics design as a viable alternative to digital pre-processing. With metrics that boast high accuracy and low power consumption, analog pre-processing has opened the door to low-power state-monitoring systems when it is utilized in place of a power-hungry digital signal-processing stage. However, the complicated design process required by analog and mixed-signal systems has been a barrier to broader applications. The implementation of floating-gate transistors has begun to pave the way for a more reasonable approach to analog design. Floating-gate technology has widespread use in the digital domain. Analog and …


Deep Models For Improving The Performance And Reliability Of Person Recognition, Sobhan Soleymani Jan 2021

Deep Models For Improving The Performance And Reliability Of Person Recognition, Sobhan Soleymani

Graduate Theses, Dissertations, and Problem Reports

Deep models have provided high accuracy for different applications such as person recognition, image segmentation, image captioning, scene description, and action recognition. In this dissertation, we study the deep learning models and their application in improving the performance and reliability of person recognition. This dissertation focuses on five aspects of person recognition: (1) multimodal person recognition, (2) quality-aware multi-sample person recognition, (3) text-independent speaker verification, (4) adversarial iris examples, and (5) morphed face images. First, we discuss the application of multimodal networks consisting of face, iris, fingerprint, and speech modalities in person recognition. We propose multi-stream convolutional neural network architectures …


Re-Design Of Precision Signal Conditioning Circuit For Detecting Schumann Resonance, Rohith Bikkina Jan 2021

Re-Design Of Precision Signal Conditioning Circuit For Detecting Schumann Resonance, Rohith Bikkina

Graduate Theses, Dissertations, and Problem Reports

Extremely low frequencies signals are waves between 3 to 30Hz and corresponding wavelengths between 10,000 to 100,000 kilometers. The specific signals used here are generated from lightning and are excited at frequencies around 8Hz, 14Hz, 20Hz. These are often called Schumann Resonance frequencies. Several stations have been built around the world for identifying ELF waves. All of those required a sparsely populated area that was far away from electric power lines because of interference from electric noise at 50 Hz and 60Hz. This project develops and tests an amplifier and filter circuit that should assist in identifying the Schumann Resonance …


Consensus Based Control Strategy For Virtual Synchronous Generators In Microgrids, Anusha Kandula Jan 2021

Consensus Based Control Strategy For Virtual Synchronous Generators In Microgrids, Anusha Kandula

Graduate Theses, Dissertations, and Problem Reports

Renewable energy sources such as photo-voltaic and wind energy are integrating very rapidly in power systems. These energy-based systems typically adopt power-electronic interfaced inverters to connect to the grid. However, unlike traditional generators, these sources have low inertia, resulting in system stability issues, especially in microgrids where they are the primary sources. To mitigate the low-inertia effect, the inverters are modeled as virtual synchronous generators (VSG), and their control is designed. The VSG emulates the inertia effect of the synchronous generator and maintains the stability of the system. Even though the droop control provides the primary control, it is insufficient …


Analysis Of Millimeter-Wave Networks: Blockage, Antenna Directivity, Macrodiversity, And Interference, Enass Hriba Jan 2021

Analysis Of Millimeter-Wave Networks: Blockage, Antenna Directivity, Macrodiversity, And Interference, Enass Hriba

Graduate Theses, Dissertations, and Problem Reports

Due to its potential to support high data rates at low latency with reasonable interference isolation because of signal blockage at these frequencies, millimeter-wave (mmWave) communications has emerged as a promising solution for next-generation wireless networks. MmWave systems are characterized by the use of highly directional antennas and susceptibility to signal blockage by buildings and other obstructions, which significantly alter the propagation environment. The received power of each transmission depends on the direction the corresponding antennas point and whether the signal’s path is line-of-sight (LOS), non-LOS (i.e., partially blocked), or completely blocked. A key challenge in modeling blocking in mmWave …