Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Flexible Battery-Less Wireless Glucose Monitoring System, Saikat Banerjee, Gymama Slaughter Jan 2022

Flexible Battery-Less Wireless Glucose Monitoring System, Saikat Banerjee, Gymama Slaughter

Bioelectrics Publications

In this work, a low power microcontroller-based near field communication (NFC) interfaced with a flexible abiotic glucose hybrid fuel cell is designed to function as a battery-less glucose sensor. The abiotic glucose fuel cell is fabricated by depositing colloidal platinum (co–Pt) on the anodic region and silver oxide nanoparticles-multiwalled carbon nanotubes (Ag2O-MWCNTs) composite on the cathodic region. The electrochemical behavior is characterized using cyclic voltammetry and chronoamperometry. This glucose hybrid fuel cell generated an open circuit voltage of 0.46 V, short circuit current density of 0.444 mA/cm2, and maximum power density of 0.062 mW/cm2 at 0.26 V …


Quadrupoles For Remote Electrostimulation Incorporating Bipolar Cancellation, Shu Xiao, Ryo Yamada, Carol Zhou Jan 2020

Quadrupoles For Remote Electrostimulation Incorporating Bipolar Cancellation, Shu Xiao, Ryo Yamada, Carol Zhou

Bioelectrics Publications

Introduction: A method that utilizes nanosecond bipolar cancellation (BPC) near a quadrupole electrodes to suppress a biological response but cancels the distal BPC at the quadrupole center, i.e., cancellation of cancellation (CANCAN), may allow for a remote focused stimulation at the quadrupole center.

Objectives: The primary object of this study was to outline the requirement of the CANCAN implementation and select an effective quadrupole configuration.

Results: We have studied three quadrupole electrode configurations, a rod quadrupole, a plate quadrupole (Plate-Q), and a resistor quadrupole. The pulse shapes of electric fields include monophasic pulses, cancellation pulses, and additive pulses. The Plate-Q …


Electrosensitization Assists Cell Ablation By Nanosecond Pulsed Electric Field In 3d Cultures, Claudia Muratori, Andrei G. Pakhomov, Shu Xiao, Olga N. Pakhomova Jan 2016

Electrosensitization Assists Cell Ablation By Nanosecond Pulsed Electric Field In 3d Cultures, Claudia Muratori, Andrei G. Pakhomov, Shu Xiao, Olga N. Pakhomova

Bioelectrics Publications

Previous studies reported a delayed increase of sensitivity to electroporation (termed "electrosensitization") in mammalian cells that had been subjected to electroporation. Electrosensitization facilitated membrane permeabilization and reduced survival in cell suspensions when the electric pulse treatments were split in fractions. The present study was aimed to visualize the effect of sensitization and establish its utility for cell ablation. We used KLN 205 squamous carcinoma cells embedded in an agarose gel and cell spheroids in Matrigel. A local ablation was created by a train of 200 to 600 of 300-ns pulses (50 Hz, 300-600 V) delivered by a two-needle probe with …


Electroporation Of Mammalian Cells By Nanosecond Electric Field Oscillations And It's Inhibition By The Electric Field Reversal, Elena C. Gianulis, Jimo Lee, Chunqi Jiang, Shu Xiao, Bennet L. Ibey, Andrei G. Pakhomov Jan 2015

Electroporation Of Mammalian Cells By Nanosecond Electric Field Oscillations And It's Inhibition By The Electric Field Reversal, Elena C. Gianulis, Jimo Lee, Chunqi Jiang, Shu Xiao, Bennet L. Ibey, Andrei G. Pakhomov

Bioelectrics Publications

The present study compared electroporation efficiency of bipolar and unipolar nanosecond electric field oscillations (NEFO). Bipolar NEFO was a damped sine wave with 140 ns first phase duration at 50% height; the peak amplitude of phases 2-4 decreased to 35%, 12%, and 7% of the first phase. This waveform was rectified to produce unipolar NEFO by cutting off phases 2 and 4. Membrane permeabilization was quantified in CHO and GH3 cells by uptake of a membrane integrity marker dye YO-PRO-1 (YP) and by the membrane conductance increase measured by patch clamp. For treatments with 1-20 unipolar NEFO, at 9.6-24 …


Kilovolt Blumlein Pulse Generator With Variable Pulse Duration And Polarity, Andrea De Angelis, Juergen F. Kolb, Luigi Zeni, Karl H. Schoenbach Jan 2008

Kilovolt Blumlein Pulse Generator With Variable Pulse Duration And Polarity, Andrea De Angelis, Juergen F. Kolb, Luigi Zeni, Karl H. Schoenbach

Bioelectrics Publications

A Blumlein pulse generator which utilizes the superposition of electrical pulses launched from two individually switched pulse forming lines has been designed and tested. By using a power metal-oxide-semiconductor field-effect transistor as a switch on each end of the Blumlein line, we were able to generate pulses with amplitudes of 1kV across a 100Ω load. Pulse duration and polarity can be controlled by the temporal delay in the triggering of the two switches. Using this technique, we have demonstrated the generation of pulses with durations between 8 and 60ns. The lower limit in pulse duration was determined by the switch …


Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach Jan 2005

Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach

Bioelectrics Publications

A fluid model has been developed and used to help clarify the physical mechanisms occurring in microhollow cathode discharges (MHCD). Calculated current-voltage (I-V) characteristics and gas temperatures in xenon at 100 Torr are presented. Consistent with previous experimental results in similar conditions, we find a voltage maximum in the I-V characteristic. We show that this structure reflects a transition between a low-current, abnormal discharge localized inside the cylindrical hollow cathode to a higher-current, normal glow discharge sustained by electron emission from the outer surface of the cathode. This transition, due to the geometry of …


Microscopic Analysis For Water Stressed By High Electric Fields In The Prebreakdown Regime, R. P. Joshi, J. Qian, K. H. Schoenbach, E. Schamiloglu Jan 2004

Microscopic Analysis For Water Stressed By High Electric Fields In The Prebreakdown Regime, R. P. Joshi, J. Qian, K. H. Schoenbach, E. Schamiloglu

Bioelectrics Publications

Analysis of the electrical double layer at the electrode-water interface for voltages close to the breakdown point has been carried out based on a static, Monte Carlo approach. It is shown that strong dipole realignment, ion-ion correlation, and finite-size effects can greatly modify the electric fields and local permittivity (hence, leading to optical structure) at the electrode interface. Dramatic enhancements of Schottky injection, providing a source for electronic controlled breakdown, are possible. It is also shown that large pressures associated with the Maxwell stress tensor would be created at the electrode boundaries. Our results depend on the ionic density, and …


Electrical Network-Based Time-Dependent Model Of Electrical Breakdown In Water, R. P. Joshi, J. Qian, K. H. Schoenbach Jan 2002

Electrical Network-Based Time-Dependent Model Of Electrical Breakdown In Water, R. P. Joshi, J. Qian, K. H. Schoenbach

Bioelectrics Publications

A time-dependent, two-dimensional, percolative approach to model dielectric breakdown based on a network of parallel resistor–capacitor elements having random values, has been developed. The breakdown criteria rely on a threshold electric field and on energy dissipation exceeding the heat of vaporization. By carrying out this time-dependent analysis, the development and propagation of streamers and prebreakdown dynamical evolution have been obtained directly. These model simulations also provide the streamer shape, characteristics such as streamer velocity, the prebreakdown delay time, time-dependent current, and relationship between breakdown times, and applied electric fields for a given geometry. The results agree well with experimental data …


Improved Energy Model For Membrane Electroporation In Biological Cells Subjected To Electrical Pulses, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson Jan 2002

Improved Energy Model For Membrane Electroporation In Biological Cells Subjected To Electrical Pulses, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson

Bioelectrics Publications

A self-consistent model analysis of electroporation in biological cells has been carried out based on an improved energy model. The simple energy model used in the literature is somewhat incorrect and unphysical for a variety of reasons. Our model for the pore formation energy E(r) includes a dependence on pore population and density. It also allows for variable surface tension, incorporates the effects of finite conductivity on the electrostatic correction term, and is dynamic in nature. Self-consistent calculations, based on a coupled scheme involving the Smoluchowski equation and the improved energy model, are presented. It is shown that E(r) becomes …


Mechanism For Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions, R. P. Joshi, K. H. Schoenbach Jan 2002

Mechanism For Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

An improved electroporation model is used to address membrane irreversibility under ultrashort electric pulse conditions. It is shown that membranes can survive a strong electric pulse and recover provided the pore distribution has a relatively large spread. If, however, the population consists predominantly of larger radii pores, then irreversibility can result. Physically, such a distribution could arise if pores at adjacent sites coalesce. The requirement of close proximity among the pore sites is more easily satisfied in smaller organelles than in outer cell membranes. Model predictions are in keeping with recent observations of cell damage to intracellular organelles (e.g., mitochondria), …


Series Operation Of Direct Current Xenon Chloride Excimer Sources, Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, Robert H. Stark, Karl H. Schoenbach Jan 2000

Series Operation Of Direct Current Xenon Chloride Excimer Sources, Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

Stable, direct current microhollow cathode discharges in mixtures of hydrochloric acid, hydrogen, xenon, and neon have been generated in a pressure range of 200–1150 Torr. The cathode hole diameter was 250 μm. Sustaining voltages range from 180 to 250 V at current levels of up to 5 mA. The discharges are strong sources of xenon chloride excimer emission at a wavelength of 308 nm. Internal efficiencies of approximately 3% have been reached at a pressure of 1050 Torr. The spectral radiant power at this pressure was measured as 5 mW/nm at 308 nm for a 3 mA discharge. By using …


Electroporation Dynamics In Biological Cells Subjected To Ultrafast Electrical Pulses: A Numerical Simulation Study, R. P. Joshi, K. H. Schoenbach Jan 2000

Electroporation Dynamics In Biological Cells Subjected To Ultrafast Electrical Pulses: A Numerical Simulation Study, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

A model analysis of electroporation dynamics in biological cells has been carried out based on the Smoluchowski equation. Results of the cellular response to short, electric pulses are presented, taking account of the growth and resealing dynamics of transient aqueous pores. It is shown that the application of large voltages alone may not be sufficient to cause irreversible breakdown, if the time duration is too short. Failure to cause irreversible damage at small pulse widths could be attributed to the time inadequacy for pores to grow and expand beyond a critical threshold radius. In agreement with earlier studies, it is …


Direct Current Glow Discharges In Atmospheric Air, Robert H. Stark, Karl H. Schoenbach Jan 1999

Direct Current Glow Discharges In Atmospheric Air, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

Direct current glow discharges have been operated in atmospheric air by using 100 μm microhollow cathode discharges as plasma cathodes. The glow discharges were operated at currents of up to 22 mA, corresponding to current densities of 3.8 A/cm2 and at average electric fields of 1.2 kV/cm. Electron densities in the glow are in the range from 1012 to 1013  cm−3. Varying the current of the microhollow cathode discharge allows us to control the current in the atmospheric pressure glow discharge. Large volume atmospheric pressure air plasmas can be generated by operating microhollow cathode discharges …


Direct Current High-Pressure Glow Discharges, Robert H. Stark, Karl H. Schoenbach Jan 1999

Direct Current High-Pressure Glow Discharges, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

Stabilization and control of a high-pressure glow discharge by means of a microhollow cathode discharge has been demonstrated. The microhollow cathode discharge, which is sustained between two closely spaced electrodes with openings of approximately 100 μm diam, serves as plasma cathode for the high-pressure glow. Small variations in the microhollow cathode discharge voltage generate large variations in the microhollow cathode discharge current and consequently in the glow discharge current. In this mode of operation the electrical characteristic of this system of coupled discharges resembles that of a vacuum triode. Using the microhollow cathode discharge as plasma cathode it was possible …


Emission Of Excimer Radiation From Direct Current, High-Pressure Hollow Cathode Discharge, Ahmed El-Habachi, Karl H. Schoenbach Jan 1998

Emission Of Excimer Radiation From Direct Current, High-Pressure Hollow Cathode Discharge, Ahmed El-Habachi, Karl H. Schoenbach

Bioelectrics Publications

A novel, nonequilibrium, high-pressure, direct current discharge, the microhollow cathode discharge, has been found to be an intense source of xenon and argon excimer radiation peaking at wavelengths of 170 and 130 nm, respectively. In argon discharges with a 100 μm diam hollow cathode, the intensity of the excimer radiation increased by a factor of 5 over the pressure range from 100 to 800 mbar. In xenon discharges, the intensity at 170 nm increased by two orders of magnitude when the pressure was raised from 250 mbar to 1 bar. Sustaining voltages were 200 V for argon and 400 V …


Electric Field Mapping System With Nanosecond Temporal Rosolution, F. E. Peterkin, R. Block, K. H. Schoenbach Jan 1995

Electric Field Mapping System With Nanosecond Temporal Rosolution, F. E. Peterkin, R. Block, K. H. Schoenbach

Bioelectrics Publications

The electric field dependence of the absorption coefficient in semi‐insulating GaAs at the absorption edge was measured in a high‐voltage pulsed experiment. Pulse duration was kept below 50 ns in order to avoid thermal effects. A GaAs laser diode was used as a probe light source with wavelength varied from 902 to 911 nm. For fields up to 40 kV/cm the absorption coefficient increased from 3 to 17 cm−1 at 902 nm, with smaller absolute increases evident at the longer wavelengths. Calculation from theory was consistent with this behavior. The spatial variation of the electric field was also recorded …


Supralinear Photoconductivity Of Copper Doped Semi-Insulating Gallium Arsenide, K. H. Schoenbach, R. P. Joshi, F. Peterkin, R. L. Druce Jan 1995

Supralinear Photoconductivity Of Copper Doped Semi-Insulating Gallium Arsenide, K. H. Schoenbach, R. P. Joshi, F. Peterkin, R. L. Druce

Bioelectrics Publications

We report on the intensity dependent supralinear photoconductivity in GaAs:Si:Cu material. The results of our measurements show that the effective carrier lifetime can change over two orders of magnitude with variations in the intensity of the optical excitation. A threshold intensity level has been observed and can be related to the occupancy of the deep copper level. Numerical simulations have also been carried out to analyze the trapping dynamics. The intensity dependent lifetimes obtained from the simulations match the experimental data very well. Finally, based on the nonlinear intensity dependence of the effective lifetimes, a possible low‐energy phototransistor application for …


Impact Of Field-Dependent Electronic Trapping Across Coulomb Repulsive Potentials On Low Frequency Charge Oscillations, R. P. Joshi, K. H. Schoenbach, P. K. Raha Jan 1994

Impact Of Field-Dependent Electronic Trapping Across Coulomb Repulsive Potentials On Low Frequency Charge Oscillations, R. P. Joshi, K. H. Schoenbach, P. K. Raha

Bioelectrics Publications

We have performed Monte Carlo simulations to obtain the field dependence of electronic trapping across repulsive potentials in GaAs. Such repulsive centers are associated with deep level impurities having multiply charged states. Our results reveal a field‐dependent maxima in the electronic capture coefficient, and the overall shape is seen to depend on the background electron density due to the effects of screening. Based on the Monte Carlo calculations, we have examined the stability of compensated semiconductors containing such repulsive centers. Our analysis indicates a potential for low frequency charge oscillations which is in keeping with available experimental data.


Temporal Development Of Electric Field Structures In Photoconductive Gaas Switches, K. H. Schoenbach, J. S. Kenney, F.E. Peterkin, R. J. Allen Jan 1993

Temporal Development Of Electric Field Structures In Photoconductive Gaas Switches, K. H. Schoenbach, J. S. Kenney, F.E. Peterkin, R. J. Allen

Bioelectrics Publications

The temporal development of the electric field distribution in semi‐insulating GaAs photoconductive switches operated in the linear and lock‐on mode has been studied. The field structure was obtained by recording a change in the absorption pattern of the switch due to the Franz–Keldysh effect at a wavelength near the band edge of GaAs. In the linear mode, a high field layer develops at the cathode contact after laser activation. With increasing applied voltage, domainlike structures become visible in the anode region and the switch transits into the lock‐on state, a permanent filamentary electrical discharge. Calibration measurements show the field intensity …


Studies Of Electron-Beam Penetration And Free-Carrier Generation In Diamond Films, R. P. Joshi, K. H. Schoenbach, C. Molina, W. W. Hofer Jan 1993

Studies Of Electron-Beam Penetration And Free-Carrier Generation In Diamond Films, R. P. Joshi, K. H. Schoenbach, C. Molina, W. W. Hofer

Bioelectrics Publications

Experimental observations of the energy‐dependent electron‐beam penetration in type II‐A natural diamond are reported. The experimental data are compared with results obtained from numerical Monte Carlo simulations, and the results are in very good agreement. The results also reveal that a threshold energy of about 125 keV is necessary for complete penetration for a 35 μm sample. It is found that over the 30–180 keV range, the energy dependence of the penetration depth and total path length exhibits a power‐law relation. Monte Carlo simulations have also been performed to investigate the excess carrier‐generation profiles within diamond for a set of …


Studies Of High Field Conduction In Diamond For Electron Beam Controlled Switching, R. P. Joshi, M. K. Kennedy, K. H. Schoenbach, W. W. Hofer Jan 1992

Studies Of High Field Conduction In Diamond For Electron Beam Controlled Switching, R. P. Joshi, M. K. Kennedy, K. H. Schoenbach, W. W. Hofer

Bioelectrics Publications

Experimental studies on a vertical metal‐diamond‐silicon switch structure have been conducted for potential pulsed power applications. Both the dc current‐voltage characteristics and the transient switching response have been measured for a range of voltages. With a 1 μm diamond film, the switch has been seen to withstand electric fields up to 1.8 MV/cm. Our results show a polarity dependence which can be associated with current injection at the asymmetric contacts. Polarity effects were also observed in the presence of e‐beam excitation, and arise due to nonuniform carrier generation near the diamond‐silicon interface. Our switching transients were seen to follow …


Bistable Behavior Of The Dark Current In Copper-Doped Semi-Insulating Gallium Arsenide, R. A. Roush, K. H. Schoenbach, R. P. Brinkmann Jan 1992

Bistable Behavior Of The Dark Current In Copper-Doped Semi-Insulating Gallium Arsenide, R. A. Roush, K. H. Schoenbach, R. P. Brinkmann

Bioelectrics Publications

The dark current characteristics of gallium arsenide doped with silicon and compensated with diffused copper were found to have a pronounced region of current controlled negative differential conductivity (ndc) similar to the characteristics of a thyristor. The resistivity of the semi‐insulating semiconductor was measured to be 105 Ω cm for applied voltages up to 2.2 kV, which corresponds to an average electric field of 38 kV/cm. At higher voltages, a transition to a stable high current state was observed with a current rate of rise exceeding 1011 A/s. There is evidence of the formation of at least one …


Electric Field Induced Emission As A Diagnostic Tool For Measurement Of Local Electric Field Strengths, A. N. Dharamsi, K. H. Schoenbach Jan 1991

Electric Field Induced Emission As A Diagnostic Tool For Measurement Of Local Electric Field Strengths, A. N. Dharamsi, K. H. Schoenbach

Bioelectrics Publications

The phenomenon of electric field induced (EFI) emission is examined in several diatomic and polyatomic molecules. The possibility of using this phenomenon as a diagnostic tool to measure, nonintrusively, the strength and direction of local electric fields in plasmas is discussed. An estimate of the EFI signal emitted in a typical application plasma is given. This yields a lower bound on the detector sensitivity necessary to exploit EFI emission in practical applications. It is concluded that, at present, the EFI signal could be measured by some very sensitive infrared detection schemes available. Current progress in infrared detector technology, if maintained, …


A Model Of Dc Glow Discharges With Abnormal Cathode Fall, Karl H. Schoenbach, Hao Chen, G. Schaefer Jan 1990

A Model Of Dc Glow Discharges With Abnormal Cathode Fall, Karl H. Schoenbach, Hao Chen, G. Schaefer

Bioelectrics Publications

A model for an abnormal glow discharge, including a self‐consistent analysis of the cathode fall, was developed. It combines microscopic particle simulation by means of Monte Carlo methods with a fluid model of the gas discharge. The model allows calculations of the steady‐state electrical field distribution, the charged‐particle densities, and the current densities along the axis of the discharge. The model was used to simulate a glow discharge in 80% He and 20% SF6 at a pressure of 8 Torr with a current density of 1 A/cm2. The computed discharge voltage agrees well with measured values. The …


A Bulk Optically Controlled Semiconductor Switch, Rudolf K.F. Germer, Karl H. Schoenbach, Stephen G.E. Pronko Jan 1988

A Bulk Optically Controlled Semiconductor Switch, Rudolf K.F. Germer, Karl H. Schoenbach, Stephen G.E. Pronko

Bioelectrics Publications

Turn‐on and turn‐off of bulk semiconductor switches, based on excitation and quenching of photoconductivity, respectively, have been demonstrated with copper‐doped II‐VI semiconductor crystals. The increase of the conductivity (turn‐on) was realized with a xenon flash‐lamp pulse of 15‐μs duration. A reduction of the conductivity (turn‐off) was obtained by irradiating the samples with IR light using an 8‐ns Nd:YAG laser pulse (YAG denotes yttrium aluminum garnet). For turn‐on in CdS:Cu the conductivity follows the xenon flash excitation. The turn‐off time constant was 250 ns. ZnS and ZnSe crystals showed a slower response. A memory effect for the IR light was observed.