Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Integrated Circuit Wear-Out Prediction And Recycling Detection Using Radio-Frequency Distinct Native Attribute Features, Randall D. Deppensmith Dec 2016

Integrated Circuit Wear-Out Prediction And Recycling Detection Using Radio-Frequency Distinct Native Attribute Features, Randall D. Deppensmith

Theses and Dissertations

Radio Frequency Distinct Native Attribute (RF-DNA) has shown promise for detecting differences in Integrated Circuits(IC) using features extracted from a devices Unintentional Radio Emissions (URE). This ability of RF-DNA relies upon process variation imparted to a semiconductor device during manufacturing. However, internal components in modern ICs electronically age and wear out over their operational lifetime. RF-DNA techniques are adopted from prior work and applied to MSP430 URE to address the following research goals: 1) Does device wear-out impact RF-DNA device discriminability?, 2) Can device age be continuously estimated by monitoring changes in RF-DNA features?, and 3) Can device age state …


Variable Response Of A Thermally Tuned Mems Pressure Sensor, Robert A. Lake, Ronald A. Coutu Jr. Aug 2016

Variable Response Of A Thermally Tuned Mems Pressure Sensor, Robert A. Lake, Ronald A. Coutu Jr.

Faculty Publications

A typical microelectromechanical systems (MEMS) pressure sensor consists of a thin, deformable membrane and sensing element such as a piezoresistive element which is used to measure the amount of deflection in response to an applied pressure. Previous efforts demonstrated that buckled membranes, from silicon on insulator (SOI) wafers, can be thermally tuned via joule heating. By applying heat to the membrane through a resistive heating element, compressive stress is induced in the membrane causing it to buckle further out of plane and increasing its overall stiffness response. It is demonstrated that by increasing the stiffness of the membrane, the response …


Benefits Of Considering More Than Temperature Acceleration For Gan Hemt Life Testing, Ronald A. Coutu Jr., Robert A. Lake, Bradley D. Christiansen, Eric R. Heller, Christopher A. Bozada, Brian S. Poling, Glen D. Via, James P. Theimer, Stephen E. Tetlak, Ramakrishna Vetury, Jeffrey B. Shealy Jun 2016

Benefits Of Considering More Than Temperature Acceleration For Gan Hemt Life Testing, Ronald A. Coutu Jr., Robert A. Lake, Bradley D. Christiansen, Eric R. Heller, Christopher A. Bozada, Brian S. Poling, Glen D. Via, James P. Theimer, Stephen E. Tetlak, Ramakrishna Vetury, Jeffrey B. Shealy

Faculty Publications

The purpose of this work was to investigate the validity of Arrhenius accelerated-life testing when applied to gallium nitride (GaN) high electron mobility transistors (HEMT) lifetime assessments, where the standard assumption is that only critical stressor is temperature, which is derived from operating power, device channel-case, thermal resistance, and baseplate temperature. We found that power or temperature alone could not explain difference in observed degradation, and that accelerated life tests employed by industry can benefit by considering the impact of accelerating factors besides temperature. Specifically, we found that the voltage used to reach a desired power dissipation is important, and …


Electromagnetic Characterization Of Materials Using A Dual Chambered High Temperature Waveguide, Jeffrey S. Sovern Mar 2016

Electromagnetic Characterization Of Materials Using A Dual Chambered High Temperature Waveguide, Jeffrey S. Sovern

Theses and Dissertations

Measurement of the electromagnetic properties of materials at high temperatures is important for industrial, scientific, medical, and aerospace applications [1]. Current high-temperature electromagnetic material characterization is a time consuming process that typically requires three days to collect data from one material specimen. For example, the standard high-temperature process involving rectangular waveguides [2] requires measurements of the sample (1), the empty waveguide (2), and a metal short standard (3) completed in separate heated runs over three days to perform the Nicolson-Ross-Weir inversion algorithm for computing permittivity and permeability. The technique developed here will reduce the high-temperature measurement process from three days …


Efficacy Of Physical Layer Preamble Manipulation For Ieee 802.11a/Ac, Benjamin W. Ramsey, Jonathan D. Fuller, Christopher W. Badenhop Mar 2016

Efficacy Of Physical Layer Preamble Manipulation For Ieee 802.11a/Ac, Benjamin W. Ramsey, Jonathan D. Fuller, Christopher W. Badenhop

Faculty Publications

Wireless physical layer manipulation is a recently discovered technique for selective packet obfuscation. This process exploits the unique and proprietary nature of transceiver designs rather than manufacturing imperfections. To date, preamble manipulation has only successfully been demonstrated on low data rate transceivers operating in the2.4 GHz band. This Letter investigates the effectiveness of preamble manipulation on common 5 GHz IEEE 802.11a and IEEE 802.11ac wireless transceivers for the first time. Herein it is demonstrated that the preamble short training sequence length can be manipulated to discern among the six transceiver designs under test with greater than 99% accuracy using fewer …


Improved Sensitivity Mems Cantilever Sensor For Terahertz Photoacoustic Spectroscopy, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie Feb 2016

Improved Sensitivity Mems Cantilever Sensor For Terahertz Photoacoustic Spectroscopy, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie

Faculty Publications

In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever’s anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom …


System And Method For Identifying Electrical Properties Of Integrate Circuits, Mary Y. Lanzerotti Jan 2016

System And Method For Identifying Electrical Properties Of Integrate Circuits, Mary Y. Lanzerotti

AFIT Patents

A new method for displaying electrical properties for integrated circuit (IC) layout designs provides for improved human visualization of those properties and comparison of as designed layout design parameters to as specified layout design parameters and to as manufactured layout parameters. The method starts with a circuitry as designed layout in a first digital format, extracts values for electrical properties from that circuitry as designed layout then annotates those values back into the first digital format. The annotated circuitry as designed layout is then converted from the first digital format to a second digital format that can be converted to …