Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Graph-Based Modeling And Optimization Of Wpt Systems For Evs, Matthew J. Hansen, Greg Droge, Abhilash Kamineni May 2024

Graph-Based Modeling And Optimization Of Wpt Systems For Evs, Matthew J. Hansen, Greg Droge, Abhilash Kamineni

Electrical and Computer Engineering Student Research

A model of a system of wireless power transfer (WPT) pads is developed, where each WPT pad is modeled as a node and the coupling between pads is modeled as graph edges. This modeling approach is generalized to admit primary, secondary, and booster coils, where power can flow among the pads and a pad can fill multiple roles. An excitation in one pad induces voltage and current in all neighboring pads, causing each pad to act as both a booster coil and either a transmitter or a receiver. Power flow through the entire system can be modeled with the graph …


Systematic Design Of A 100 W 6.78 Mhz Wireless Charging Station Covering Multiple Devices And A Large Charging Area, Jie Li May 2022

Systematic Design Of A 100 W 6.78 Mhz Wireless Charging Station Covering Multiple Devices And A Large Charging Area, Jie Li

Doctoral Dissertations

Wireless power transfer (WPT) promises to offer safe and convenient charging in consumer electronics applications. The application ranges from sub-watt medical implant device charging to watt-level household charging, further to the kilowatt electric vehicle (EV) and railway charging. At present, two industry standards are widely used to guide the WPT product design. The Qi standard describes an application that requires the receiver to be placed close to the transmitter, called "tightly coupled" WPT. The receiver coil typically has a similar size compared to the transmitter. And the operation frequency is in the kHz range. The Airfuel standard, on the other …


A High Frequency Wireless Power Transfer System For Electric Vehicle Charging Using Multi-Layer Non-Uniform Self-Resonant Coil, Ruiyang Qin May 2022

A High Frequency Wireless Power Transfer System For Electric Vehicle Charging Using Multi-Layer Non-Uniform Self-Resonant Coil, Ruiyang Qin

Doctoral Dissertations

Wireless EV (Electric Vehicle) charging is an emerging technology with rapid development in the past decade. Compared to wired EV chargers, wireless power transfer (WPT) enables safe and unobtrusive charging for EVs.

This work proposes high frequency wireless charging using a self-resonant (SR) coil at several megahertz. A multi-layer self-resonant coil structure is proposed, allowing high quality factor coils to be fabricated from layers of inexpensive copper foil and dielectric film. Additionally, the self-resonant coil utilizes its interlayer capacitance for resonance, eliminating the external compensation capacitor and shrinking the overall volume of passive component to increase the power density. Comparing …


Design Optimization Of Inductive Power Transfer Systems For Contactless Electric Vehicle Charging Applications, Masood Moghaddami Oct 2018

Design Optimization Of Inductive Power Transfer Systems For Contactless Electric Vehicle Charging Applications, Masood Moghaddami

FIU Electronic Theses and Dissertations

Contactless Electric Vehicle (EV) charging based on magnetic resonant induction is an emerging technology that can revolutionize the future of the EV industry and transportation systems by enabling an automated and convenient charging process. However, in order to make this technology an acceptable alternative for conventional plug-in charging systems it needs to be optimized for different design measures. Specifically, the efficiency of an inductive EV charging system is of a great importance and should be comparable to the efficiency of conventional plug-in EV chargers.

The aim of this study is to develop solutions that contribute to the design enhancement of …


Novel Strongly Coupled Magnetic Resonant Systems, Daerhan Liu Mar 2018

Novel Strongly Coupled Magnetic Resonant Systems, Daerhan Liu

FIU Electronic Theses and Dissertations

Wireless power transfer (WPT) technologies have become important for our everyday life. The most commonly used near-field WPT method is inductive coupling, which suffers from low efficiency and small range. The Strongly Coupled Magnetic Resonance (SCMR) method was developed recently, and it can be used to wirelessly transfer power with higher efficiency over a longer distance than the inductive coupling method.

This dissertation develops new SCMR systems that have better performance compared to standard SCMR systems. Specifically, two new 3-D SCMR systems are designed to improve the angular misalignment sensitivity of WPT systems. Their power transfer efficiency for different angular …


A Study Of The Sensitivity Of Energy Conversion Efficiency To Load Variation In Class-E Resonant Power Inverter, Richard Samuel Jennings Apr 2017

A Study Of The Sensitivity Of Energy Conversion Efficiency To Load Variation In Class-E Resonant Power Inverter, Richard Samuel Jennings

Electrical & Computer Engineering Theses & Dissertations

In this thesis the sensitivity of energy conversion efficiency (ECE) and output power of a class-E resonant inverter under variable resistive and inductive load assignments is examined for wireless power transfer (WPT) applications. By performing simulation and mathematical analysis, it was found that the on-resistance of the switching device has minor effect on the design’s efficiency. Additional comparisons between the simulation and mathematical analysis show reasonable output power and ECE load variation performance for the design, but with unique load impedances where zero voltage switching (ZVS) and zero derivative switching (ZDS) are achieved. These comparisons also expose inaccurate mathematical assumptions. …


Optimal And Miniaturized Strongly Coupled Magnetic Resonant Systems, Hao Hu Nov 2016

Optimal And Miniaturized Strongly Coupled Magnetic Resonant Systems, Hao Hu

FIU Electronic Theses and Dissertations

Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and …


Isolated Wired And Wireless Battery Charger With Integrated Boost Converter For Phev And Ev Applications, Madhu Sudhan Chinthavali Aug 2015

Isolated Wired And Wireless Battery Charger With Integrated Boost Converter For Phev And Ev Applications, Madhu Sudhan Chinthavali

Doctoral Dissertations

Vehicle charging and vehicle traction drive components can be integrated for multi-functional operations, as these functions are currently operating independently. While the vehicle is parked, the hardware that is available from the traction drive can be used for charging. The only exception to this would be the dynamic vehicle-charging concept on roadways. WPT can be viewed as a revolutionary step in PEV charging because it fits the paradigm of vehicle to infrastructure (V2I) wirelessly. WPT charging is convenient and flexible not only because it has no cables and connectors that are necessary, but due more to the fact that charging …


Design Of Analog Cmos Circuits For Batteryless Implantable Telemetry Systems, Kyle G. A. De Gannes Apr 2014

Design Of Analog Cmos Circuits For Batteryless Implantable Telemetry Systems, Kyle G. A. De Gannes

Electronic Thesis and Dissertation Repository

A wireless biomedical telemetry system is a device that collects biomedical signal measurements and transmits data through wireless RF communication. Testing medical treatments often involves experimentation on small laboratory animals, such as genetically modified mice and rats. Using batteries as a power source results in many practical issues, such as increased size of the implant and limited operating lifetime. Wireless power harvesting for implantable biomedical devices removes the need for batteries integrated into the implant. This will reduce device size and remove the need for surgical replacement due to battery depletion. Resonant inductive coupling achieves wireless power transfer in a …


Design And Optimization Of Efficient Wireless Power Transfer Links For Implantable Biotelemetry Systems, Shawon Senjuti Mar 2013

Design And Optimization Of Efficient Wireless Power Transfer Links For Implantable Biotelemetry Systems, Shawon Senjuti

Electronic Thesis and Dissertation Repository

Wireless power transmission is a technique that converts energy from radio frequency (RF) electromagnetic (EM) waves into DC voltage, which has been used here for the purpose of providing a power supply to bio–implantable batteryless sensors. The main constraints of the design are to achieve the minimum power required by the application, by still keeping the implant size small enough for the living subject’s body. Resonance–based inductive coupling is a method being actively researched for the use in this type of power transmission, which uses two pairs of inductor coils in the external and implant circuits.

In this work, we …


Wireless Power Transfer For Space Applications: System Design And Electromagnetic Compatibility Compliance Of Radiated Emissions, Ramos Gabriel Vazquez Jan 2012

Wireless Power Transfer For Space Applications: System Design And Electromagnetic Compatibility Compliance Of Radiated Emissions, Ramos Gabriel Vazquez

Electronic Theses and Dissertations

This dissertation evaluates the possibility of wireless power transfer (WPT) systems for space applications, with an emphasis in launch vehicles (rockets). After performing literature review for WPT systems, it was identified that magnetic resonance provides the more suited set of characteristics for this application. Advanced analysis, simulation and testing were performed to magnetic resonance WPT systems to acquire system performance insight. This was accomplished by evaluating/varying coupling configuration, load effects and magnetic element physical characteristics (i.e. wire material, loop radius, etc.). It was identified by analysis, circuit simulation and testing that the best coupling configuration for this application was series-series …


Design Of Wireless Power Transfer And Data Telemetry System For Biomedical Applications, Ashraf Bin Islam Dec 2011

Design Of Wireless Power Transfer And Data Telemetry System For Biomedical Applications, Ashraf Bin Islam

Doctoral Dissertations

With the advancement of biomedical instrumentation technologies sensor based remote healthcare monitoring system is gaining more attention day by day. In this system wearable and implantable sensors are placed outside or inside of the human body. Certain sensors are needed to be placed inside the human body to acquire the information on the vital physiological phenomena such as glucose, lactate, pH, oxygen, etc. These implantable sensors have associated circuits for sensor signal processing and data transmission. Powering the circuit is always a crucial design issue. Batteries cannot be used in implantable sensors which can come in contact with the blood …