Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Engineering

Flux-Quanta Injection For Nonreciprocal Current Control In A Two-Dimensional Noncentrosymmetric Superconducting Structure, Serafim Teknowijoyo, Sara Chahid, Armen Gulian Jul 2023

Flux-Quanta Injection For Nonreciprocal Current Control In A Two-Dimensional Noncentrosymmetric Superconducting Structure, Serafim Teknowijoyo, Sara Chahid, Armen Gulian

Mathematics, Physics, and Computer Science Faculty Articles and Research

We designed and experimentally demonstrated a four-terminal superconducting device, a “quadristor,” that can function as a nonlatching (reversible) superconducting switch from the diode regime to the resistive state by application of a control current much smaller than the main transport current. The device uses a vortex-based superconducting-diode mechanism that is switched back and forth via the injection of flux quanta through auxiliary current leads. Our finding opens a new research area in the field of superconducting electronics.


Analysis Of Degradation Of Sb2se3 Thin Film Solar Cells Deploying A Time-Dependent Approach Linked With 1d-Amps Simulation, Ming-Lang Tseng, Malek Gassoumi, Nima Ghadiri Jan 2023

Analysis Of Degradation Of Sb2se3 Thin Film Solar Cells Deploying A Time-Dependent Approach Linked With 1d-Amps Simulation, Ming-Lang Tseng, Malek Gassoumi, Nima Ghadiri

Articles

In this paper, we have developed a time-dependent model to study defect growth in the absorber layer of Sb2Se3 thin film solar cells. This model has been integrated with the AMPS-1D simulation platform to investigate the impact of increasing defect density at different positions within the Sb2Se3 layer on the electrical parameters of the solar cell. We adopted the Gloeckler standard model for thin films in AMPS to represent Sb2Se3 materials. The study focuses on tracking the degradation of device performance parameters as donor-like mid-gap states accumulate in the Sb2Se3 layer over time. We monitored the variation of key electrical …


Photoassisted Nanoscale Memory Resistors, Amir Shariffar May 2022

Photoassisted Nanoscale Memory Resistors, Amir Shariffar

Graduate Theses and Dissertations

Memristors or memory resistors are promising two-terminal devices, which have the potential to revolutionize current electronic memory technologies. Memristors have been extensively investigated and reported to be practical devices, although they still suffer from poor stability, low retention time, and laborious fabrication processes.

The primary aim of this project was to achieve a device structure of quantum dots or thin films to address a fundamental challenge of unstable resistive switching behavior in memristors. Moreover, we aimed to investigate the effects of light illumination in terms of intensity and wavelength on the performance of the fabricated memristor. The parameters such as …


Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene Jan 2021

Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene

Theses and Dissertations

In the field of photovoltaics, scientists and researchers are working fervently to produce a combination of efficient, stable, low cost and scalable devices. Methylammonium lead trihalide perovskite has attracted intense interest due to its high photovoltaic performance, low cost, and ease of manufacture. Their high absorption coefficient, tunable bandgap, low-temperature processing, and abundant elemental constituent provide innumerable advantages over other thin film absorber materials. Since the perovskite film is the most important in the device, morphology, crystallization, compositional and interface engineering have been explored to boost its performance and stability. High temperatures necessary for crystallization of organic-inorganic hybrid perovskite films …


Charge Transport, Conductivity And Seebeck Coefficient In Pristine And Tcnq Loaded Preferentially Grown Metal Organic Frameworks, Xin Chen, Kai Zhang, Zeinab Mohammed Hassan, Engelbert Redel, Helmut Baumgart Jan 2021

Charge Transport, Conductivity And Seebeck Coefficient In Pristine And Tcnq Loaded Preferentially Grown Metal Organic Frameworks, Xin Chen, Kai Zhang, Zeinab Mohammed Hassan, Engelbert Redel, Helmut Baumgart

Electrical & Computer Engineering Faculty Publications

This investigation on Metal-Organic Framework (MOF) HUKUST-1 films focuses on comparing the undoped pristine state and with the case of doping by TCNQ infiltration of the MOF pore structure. We have determined the temperature dependent charge transport and p-type conductivity for HKUST-1 films. Furthermore, the electrical conductivity and the current-voltage characteristics have been characterized in detail. Because the most common forms of MOFs, bulk MOF powders, do not lend themselves easily to electrical characterization investigations, here in this study the electrical measurements were performed on dense, compact surface-anchored metal-organic framework (SURMOF) films. These monolithic, well-defined, and (001) preferentially oriented MOF …


Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory Nov 2019

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory

Faculty Publications

Radiation effects on graphene field effect transistors (GFETs) with hexagonal boron nitride (h-BN) thin film substrates are investigated using 60Co gamma-ray radiation. This study examines the radiation response using many samples with varying h-BN film thicknesses (1.6 and 20 nm thickness) and graphene channel lengths (5 and 10 μm). These samples were exposed to a total ionizing dose of approximately 1 Mrad(Si). I-V measurements were taken at fixed time intervals between irradiations and postirradiation. Dirac point voltage and current are extracted from the I-V measurements, as well as mobility, Dirac voltage hysteresis, and the total number of GFETs that remain …


Structural And Photoluminescence Properties Of Zno Thin Films Deposited By Ultrasonic Spray Pyrolysis, Iwan Sugihartono, Erfan Handoko, Vivi Fauzia, Artoto Arkundato, Lara Permata Sari Apr 2018

Structural And Photoluminescence Properties Of Zno Thin Films Deposited By Ultrasonic Spray Pyrolysis, Iwan Sugihartono, Erfan Handoko, Vivi Fauzia, Artoto Arkundato, Lara Permata Sari

Makara Journal of Technology

Zinc oxide (ZnO) thin films on a silicon (Si) (111) substrate were grown herein using ultrasonic spray pyrolysis at 450 °C with different Zn concentrations. The ZnO thin films had X-ray diffraction patterns of a polycrystalline hexagonal wurtzite structure. The (002) and (101) peak intensities changed under different Zn concentrations. Furthermore, according to Scherer's and Stokes–Wilson equations, the crystallite size and the internal strain of the ZnO thin films in the (002) and (101) peaks changed with the Zn concentration. Optically, the photoluminescence spectra indicated that the ratio of the UV/GB emission of the ZnO thin films was the highest …


Nanostructure Evolution Of Magnetron Sputtered Hydrogenated Silicon Thin Films, Dipendra Adhikari, Maxwell M. Junda, Sylvain X. Marsillac, Robert W. Collins, Nikolas J. Podraza Aug 2017

Nanostructure Evolution Of Magnetron Sputtered Hydrogenated Silicon Thin Films, Dipendra Adhikari, Maxwell M. Junda, Sylvain X. Marsillac, Robert W. Collins, Nikolas J. Podraza

Electrical & Computer Engineering Faculty Publications

Hydrogenated silicon (Si:H) thin films have been prepared by radio frequency (RF) magnetron sputtering. The effect of hydrogen gas concentration during sputtering on the resultant film structural and optical properties has been investigated by real time spectroscopic ellipsometry (RTSE) and grazing incidence x-ray diffraction (GIXRD). The analysis of in-situ RTSE data collected during sputter deposition tracks the evolution of surface roughness and film bulk layer thickness with time. Growth evolution diagrams depicting amorphous, nanocrystalline and mixed-phase regions for low and high deposition rate Si:H are constructed and the effects of process parameter (hydrogen gas concentration, total pressure and RF power) …


Low Cost Schottky Barrier Solar Cells Fabricated On Cdse And Sb2S3 Films Chemically Deposited With Silicotungstic Acid, O. Savadogo, K. C. Mandal Apr 2015

Low Cost Schottky Barrier Solar Cells Fabricated On Cdse And Sb2S3 Films Chemically Deposited With Silicotungstic Acid, O. Savadogo, K. C. Mandal

Krishna C. Mandal

No abstract provided.


The Ph Sensing Properties Of Rf Sputtered Ruo2 Thin-Film Prepared Using Different Ar/O2 Flow Ratio, Ali Sardarinejad, Devendra Kumar Maurya, Kamal Alameh Jan 2015

The Ph Sensing Properties Of Rf Sputtered Ruo2 Thin-Film Prepared Using Different Ar/O2 Flow Ratio, Ali Sardarinejad, Devendra Kumar Maurya, Kamal Alameh

Research outputs 2014 to 2021

The influence of the Ar/O2 gas ratio during radio frequency (RF) sputtering of the RuO2 sensing electrode on the pH sensing performance is investigated. The developed pH sensor consists in an RF sputtered ruthenium oxide thin-film sensing electrode, in conjunction with an electroplated Ag/AgCl reference electrode. The performance and characterization of the developed pH sensors in terms of sensitivity, response time, stability, reversibility, and hysteresis are investigated. Experimental results show that the pH sensor exhibits super-Nernstian slopes in the range of 64.33-73.83 mV/pH for Ar/O2 gas ratio between 10/0-7/3. In particular, the best pH sensing performance, in …


Investigation On Electrical Properties Of Rf Sputtered Deposited Bcn Thin Films, Adithya Prakash Jan 2013

Investigation On Electrical Properties Of Rf Sputtered Deposited Bcn Thin Films, Adithya Prakash

Electronic Theses and Dissertations

The ever increasing advancements in semiconductor technology and continuous scaling of CMOS devices mandate the need for new dielectric materials with low-k values. The interconnect delay can be reduced not only by the resistance of the conductor but also by decreasing the capacitance of dielectric layer. Also cross-talk is a major issue faced by semiconductor industry due to high value of k of the inter-dielectric layer (IDL) in a multilevel wiring scheme in Si ultra large scale integrated circuit (ULSI) devices. In order to reduce the time delay, it is necessary to introduce a wiring metal with low resistivity and …


Structural, Optical And Electrical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Abhilash Kongu Jan 2013

Structural, Optical And Electrical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Abhilash Kongu

Open Access Theses & Dissertations

Hafnium oxide (HfO2) has emerged as the most promising high-k dielectric for Metal-Oxide-Semiconductor (MOS) devices and has been highlighted as the most suitable dielectric materials to replace silicon oxide because of its comprehensive performance. In the present research, yttrium-doped HfO2 (YDH) thin films were fabricated using RF magnetron sputter deposition onto Si (100) and quartz with a variable thickness. Cross-sectional scanning electron microscopy coupled with Filmetrics revealed that film thickness values range from 700 A° to 7500 A°. Electrical properties such as AC Resistivity and current-voltage (I-V) characteristics of YDH films were studied. YDH films that were relatively thin (<1500 A°) crystallized in monoclinic phase while thicker films crystallized in cubic phase. The band gap (Eg) of the films was calculated from the optical measurements. The band gap was found to be ∼5.60 eV for monoclinic while it is ∼6.05 eV for cubic phase of YDH films. Frequency dependence of the electrical resistivity (ρac) and the total conductivity of the films were measured. Resistivity decreased (by three orders of magnitude) with increasing frequency from 100 Hz to 1 MHz, attributed due to the hopping mechanism in YDH films. Whereas, while ρac∼1Ω-m at low frequencies (100 Hz), it decreased to ∼ 104 Ω-cm at higher frequencies (1 MHz). Aluminum (Al) metal electrodes were deposited to fabricate a thin film capacitor with YDH layer as dielectric film thereby employing Al-YDH-Si capacitor structure. The results indicate that the capacitance of the films decrease with increasing film thickness. A detailed analysis of the electrical characteristics of YDH films is presented.


Effects Of Deposition Parameters And Oxygen Addition On Properties Of Sputtered Indium Tin Oxide Films, Badrul Munir, Rachmat Adhi Wibowo, Kim Kyoo Ho Nov 2012

Effects Of Deposition Parameters And Oxygen Addition On Properties Of Sputtered Indium Tin Oxide Films, Badrul Munir, Rachmat Adhi Wibowo, Kim Kyoo Ho

Makara Journal of Technology

Indium tin oxide (ITO) films were sputtered on corning glass substrate. Oxygen admixture and sputtering deposition parameters were optimized to obtain the highest transparency as well as lowest resistivity. Structural, electrical and optical properties of the films were then examined. Increasing deposition rate and film thickness changed the crystallographic orientation from (222) to (400) and (440), as well as higher surface roughness. It was necessary to apply substrate heating during reposition to get films with better crystallinity. The lowest resistivity of 5.36 x 10-4 Ω•cm was obtained at 750 nm film thickness. The films’ resistivity was increased by addition of …


Contact Resistance Study Of Noble Metals And Alloy Films Using A Scanning Probe Microscope Test Station, Lei Chen, H. Lee, Z. J. Guo, Nicol E. Mcgruer, K. W. Gilbert, S. Mall, Kevin D. Leedy, George G. Adams May 2011

Contact Resistance Study Of Noble Metals And Alloy Films Using A Scanning Probe Microscope Test Station, Lei Chen, H. Lee, Z. J. Guo, Nicol E. Mcgruer, K. W. Gilbert, S. Mall, Kevin D. Leedy, George G. Adams

George G. Adams

The proper selection of electrical contact materials is one of the critical steps in designing a metal contact microelectromechanical system (MEMS) switch. Ideally, the contact should have both very low contact resistance and high wear resistance. Unfortunately this combination cannot be easily achieved with the contact materials currently used in macroswitches because the available contact force in microswitches is generally insufficient (less than 1 mN) to break through nonconductive surface layers. As a step in the materials selection process, three noble metals, platinum (Pt), rhodium (Rh), ruthenium (Ru), and their alloys with gold (Au) were deposited as thin films on …


Contact Resistance Study Of Noble Metals And Alloy Films Using A Scanning Probe Microscope Test Station, Lei Chen, H. Lee, Z. J. Guo, Nicol E. Mcgruer, K. W. Gilbert, S. Mall, Kevin D. Leedy, George G. Adams May 2011

Contact Resistance Study Of Noble Metals And Alloy Films Using A Scanning Probe Microscope Test Station, Lei Chen, H. Lee, Z. J. Guo, Nicol E. Mcgruer, K. W. Gilbert, S. Mall, Kevin D. Leedy, George G. Adams

Nicol E. McGruer

The proper selection of electrical contact materials is one of the critical steps in designing a metal contact microelectromechanical system (MEMS) switch. Ideally, the contact should have both very low contact resistance and high wear resistance. Unfortunately this combination cannot be easily achieved with the contact materials currently used in macroswitches because the available contact force in microswitches is generally insufficient (less than 1 mN) to break through nonconductive surface layers. As a step in the materials selection process, three noble metals, platinum (Pt), rhodium (Rh), ruthenium (Ru), and their alloys with gold (Au) were deposited as thin films on …


Investigation Of Reactively Sputtered Boron Carbon Nitride Thin Films, Vinit O. Todi Jan 2011

Investigation Of Reactively Sputtered Boron Carbon Nitride Thin Films, Vinit O. Todi

Electronic Theses and Dissertations

Research efforts have been focused in the development of hard and wear resistant coatings over the last few decades. These protective coatings find applications in the industry such as cutting tools, automobile and machine part etc. Various ceramic thin films like TiN, TiAlN, TiC, SiC and diamond-like carbon (DLC) are examples of the films used in above applications. However, increasing technological and industrial demands request thin films with more complicated and advanced properties. For this purpose, B-C-N ternary system which is based on carbon, boron and nitrogen which exhibit exceptional properties and attract much attention from mechanical, optical and electronic …


Optimization Of Process Parameters For Reduced Thickness Cigses Thin Film Solar Cells, Shirish A. Pethe Jan 2010

Optimization Of Process Parameters For Reduced Thickness Cigses Thin Film Solar Cells, Shirish A. Pethe

Electronic Theses and Dissertations

With the advent of the 21st century, one of the serious problems facing mankind is harmful effects of global warming. Add to that the ever increasing cost of fuel and the importance of development of clean energy resources as alternative to fossil fuel has becomes one of the prime and pressing challenges for modern science and technology in the 21st century. Recent studies have shown that energy related sources account for 50% of the total emission of carbon dioxide in the atmosphere. All research activities are focused on developing various technologies that are capable of converting sunlight into electricity with …


Microstructure And Electrical Performance Of Sputter-Deposited Hafnium Oxide (Hfo2) Thin Films, Brandon Adrian Aguirre Jan 2009

Microstructure And Electrical Performance Of Sputter-Deposited Hafnium Oxide (Hfo2) Thin Films, Brandon Adrian Aguirre

Open Access Theses & Dissertations

Hafnium oxide (HfO2) based dielectrics have been currently considered as the possible replacements for the traditional gate-oxide (SiO2) of the complementary metal-oxide semiconductor (CMOS) devices. The high dielectric constant, wide band gap, and thermal stability in contact with Si make HfO2 a potential material for application in CMOS devices. The performance of HfO2 as a gate oxide material, however, depends on its quality and interface structure with Si. In this work, HfO2 thin films have been deposited by rf sputtering onto Si(100) substrates under varying growth temperatures (Ts). The objective of the work is to understand the growth and microstructure …


Investigation Of Nanoporous Thin-Film Alumina Templates, Biswajit Das May 2004

Investigation Of Nanoporous Thin-Film Alumina Templates, Biswajit Das

Electrical & Computer Engineering Faculty Research

This paper presents the results of a systematic study of the fabrication of thin-film alumina templates on silicon and other substrates. Such templates are of significant interest for the low-cost implementation of semiconductor and metal nanostructure arrays. In addition, thin-film alumina templates on silicon have the potential for nanostructure integration with silicon electronics. Formation of thin-film alumina templates on silicon substrates was investigated under different fabrication conditions, and the dependence of pore morphology and pore formation rate on process parameters was evaluated. In addition, process conditions for improved pore size distribution and periodicity were determined. The template/silicon interface, important for …


Low Cost Schottky Barrier Solar Cells Fabricated On Cdse And Sb2S3 Films Chemically Deposited With Silicotungstic Acid, O. Savadogo, K. C. Mandal Oct 1994

Low Cost Schottky Barrier Solar Cells Fabricated On Cdse And Sb2S3 Films Chemically Deposited With Silicotungstic Acid, O. Savadogo, K. C. Mandal

Faculty Publications

No abstract provided.


Design Of Mask For Striped Filters And Thin-Film Multi-Layer Emissivity Modeling For Multi-Wavelength Imaging Pyrometer, Jitesh Navinchandra Shah Oct 1993

Design Of Mask For Striped Filters And Thin-Film Multi-Layer Emissivity Modeling For Multi-Wavelength Imaging Pyrometer, Jitesh Navinchandra Shah

Theses

Multi-Wavelength Imaging Pyrometry (M-WIP) measures thermal radiation of any target (color or gray) in multiple narrow-spectral-regions and can simultaneously determine target temperature and emissivity. One approach for measuring radiation at multiple wavelengths using a 320X244 element Pt-Si SBD infrared camera is to use narrow-band striped filters deposited on a transparent substrate with proper alignment. The major focus of this thesis was the design of a four layer mask for investigating the feasibility of defining three-wavelength striped filters compatible with focal plane array. This mask design allows twelve distinct narrow band striped filter geometries and four test-patterns on a 4-inch silicon …


Low‐Cost Technique For Preparing N‐Sb2S3/P‐Si Heterojunction Solar Cells, O. Savadogo, K. C. Mandal Jul 1993

Low‐Cost Technique For Preparing N‐Sb2S3/P‐Si Heterojunction Solar Cells, O. Savadogo, K. C. Mandal

Faculty Publications

No abstract provided.


Synthesis And Characterization Of Lpcvd Silicon Carbide Thin Films For X-Ray Lithography, Mahalingam Bhaskaran May 1991

Synthesis And Characterization Of Lpcvd Silicon Carbide Thin Films For X-Ray Lithography, Mahalingam Bhaskaran

Theses

Amorphous silicon carbide thin films were fabricated using low pressure chemical deposition method with a single liquid precursor, di tertiary butyl silane. The films were deposited for a temperature range of 500-850°C and at different pressures ranging from 0.05 to 1 torr. The growth rate of the films deposited at constant pressure of 0.2 torr with a flow rate of 60 sccm, was found to follow an Arrehenius Behavior in the temperature range of 600 - 675°C, yielding an activation energy of 32.5 k cal mol-1 . IR spectroscopic study showed an absorption peak centered at 780 cm-1 …


Electrical Properties Of Hydrogenated Diamond, Sacharia Albin, Linwood Watkins Jan 1990

Electrical Properties Of Hydrogenated Diamond, Sacharia Albin, Linwood Watkins

Electrical & Computer Engineering Faculty Publications

Hydrogen passivation of deep traps in diamond is demonstrated. Current‐voltage (IV) characteristics of polycrystalline thin film and bulk diamond were studied before and after hydrogenation. On hydrogenation, all the samples showed several orders of magnitude increase in conductivity. Hydrogenation was carried out under controlled conditions to study the changes in the IV characteristics of the samples. The concentration of uncompensated traps was varied systematically by hydrogenation. The concentration of electrically active hydrogen was determined from the IV data. It is shown that hydrogenation is an alternative to deep‐level transient spectroscopy, suitable for …