Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics

PDF

University of South Carolina

Heterojunctions

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Iii-Nitride Transistors With Capacitively Coupled Contacts, Grigory Simin, Z.-J. Yang, A. Koudymov, V. Adivarahan, M. Asif Khan Jul 2006

Iii-Nitride Transistors With Capacitively Coupled Contacts, Grigory Simin, Z.-J. Yang, A. Koudymov, V. Adivarahan, M. Asif Khan

Faculty Publications

AlGaN∕GaNheterostructure field-effect transistor design using capacitively coupled contacts (C3HFET) is presented. Insulated-gate [C3 metal-oxide-semiconductor HFET(C3MOSHFET)] has also been realized. The capacitively coupled source, gate, and drain of C3 device do not require annealedOhmic contacts and can be fabricated using gate alignment-free technology. For typical AlGaN∕GaNheterostructures, the equivalent contact resistance of C3 transistors is below 0.6Ωmm. In rf-control applications, the C3HFET and especially the C3MOSHFET have much higher operating rf powers as compared to HFETs.C3 design is instrumental for studying the two-dimensional electron gas transport in other wide band gap …


Algan/Gan/Algan Double Heterostructure For High-Power Iii-N Field-Effect Transistors, C. Q. Chen, J. P. Zhang, V. Adivarahan, A. Koudymov, H. Fatima, Grigory Simin, J. Yang, M. Asif Khan Jun 2006

Algan/Gan/Algan Double Heterostructure For High-Power Iii-N Field-Effect Transistors, C. Q. Chen, J. P. Zhang, V. Adivarahan, A. Koudymov, H. Fatima, Grigory Simin, J. Yang, M. Asif Khan

Faculty Publications

We propose and demonstrate an AlGaN/GaN/AlGaN double heterostructure (DH) with significantly improved two-dimensional (2D) confinement for high-power III-N heterostructurefield-effect transistors(HFETs). The DH was grown directly on an AlN buffer over i-SiC substrate. It enables an excellent confinement of the 2D gas and also does not suffer from the parasitic channel formation as experienced in past designs grown over GaN buffer layers. Elimination of the GaN buffer modifies the strain distribution in the DH, enabling Al contents in the barrier region well over 30%. For the AlGaN/GaN/AlGaN DH design, the 2D electron gasmobility achieved was 1150 cm2/V s at …


Real-Space Electron Transfer In Iii-Nitride Metal-Oxide-Semiconductor-Heterojunction Structures, S. Saygi, A. Koudymov, V. Adivarahan, J. Yang, Grigory Simin, M. Asif Khan, J. Deng, R. Gaska, M. S. Shur Jul 2005

Real-Space Electron Transfer In Iii-Nitride Metal-Oxide-Semiconductor-Heterojunction Structures, S. Saygi, A. Koudymov, V. Adivarahan, J. Yang, Grigory Simin, M. Asif Khan, J. Deng, R. Gaska, M. S. Shur

Faculty Publications

The real-space transfer effect in a SiO2∕AlGaN∕GaN metal-oxide-semiconductor heterostructure (MOSH) from the two-dimensional (2D) electron gas at the heterointerface to the oxide-semiconductor interface has been demonstrated and explained. The effect occurs at high positive gate bias and manifests itself as an additional step in the capacitance-voltage (C‐V) characteristic. The real-space transfer effect limits the achievable maximum 2D electron gas density in the device channel. We show that in MOSH structures the maximum electron gas density exceeds up to two times that at the equilibrium (zero bias) condition. Correspondingly, a significant increase in the maximum channel current (up to …


Simulation Of Gate Lag And Current Collapse In Gallium Nitride Field-Effect Transistors, N. Braga, R. Mickevicius, R. Gaska, M. S. Shur, M. Asif Khan, Grigory Simin Nov 2004

Simulation Of Gate Lag And Current Collapse In Gallium Nitride Field-Effect Transistors, N. Braga, R. Mickevicius, R. Gaska, M. S. Shur, M. Asif Khan, Grigory Simin

Faculty Publications

Results of two-dimensional numerical simulations of gate lag and current collapse in GaN heterostructurefield-effect transistors are presented. Simulation results clearly show that current collapse takes place only if an enhanced trapping occurs under the gate edges. Hot electrons play an instrumental role in the collapse mechanism. The simulation results also link the current collapse with electrons spreading into the buffer layer and confirm that a better electron localization (as in a double heterostructurefield-effect transistor) can dramatically reduce current collapse.


Simulation Of Hot Electron And Quantum Effects In Algan/Gan Heterostructure Field Effect Transistors, N. Braga, R. Mickevicius, R. Gaska, H. Xu, M. S. Shur, M. Asif Khan, Grigory Simin, J. Yang Jun 2004

Simulation Of Hot Electron And Quantum Effects In Algan/Gan Heterostructure Field Effect Transistors, N. Braga, R. Mickevicius, R. Gaska, H. Xu, M. S. Shur, M. Asif Khan, Grigory Simin, J. Yang

Faculty Publications

We report on simulations of electrical characteristics of AlGaN/(InGaN)/GaN heterostructurefield effect transistors with quantum and hot electroneffects taken into account. Polarization charges lead to quantum confinement of electrons in the channel and to the formation of two-dimensional electron gas. The electron quantization leads to the spread of the electronwave function into the barrier and bulk but does not have significant impact on dc electrical characteristics.Hot electrons play an important part in the charge transport by spilling over into the bulk GaN where they are captured by traps. This leads to negative differential conductivity, which is also observed experimentally. The simulation …


Induced Strain Mechanism Of Current Collapse In Algan/Gan Heterostructure Field-Effect Transistors, Grigory Simin, A. Koudymov, A. Tarakji, X. Hu, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska Oct 2001

Induced Strain Mechanism Of Current Collapse In Algan/Gan Heterostructure Field-Effect Transistors, Grigory Simin, A. Koudymov, A. Tarakji, X. Hu, J. Yang, M. Asif Khan, M. S. Shur, R. Gaska

Faculty Publications

Gated transmission line model pattern measurements of the transient current–voltage characteristics of AlGaN/GaN heterostructurefield-effect transistors(HFETs) and metal–oxide–semiconductor HFETs were made to develop a phenomenological model for current collapse. Our measurements show that, under pulsed gate bias, the current collapse results from increased source–gate and gate–drain resistances but not from the channel resistance under the gate. We propose a model linking this increase in series resistances (and, therefore, the current collapse) to a decrease in piezoelectriccharge resulting from the gate bias-induced nonuniform strain in the AlGaN barrier layer.


High Electron Mobility In Algan/Gan Heterostructures Grown On Bulk Gan Substrates, E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean, J. Massies, C. Skierbiszewski, T. Suski, I. Grzegory, S. Porowski, Grigory Simin, X. Hu, M. Asif Khan, M. S. Shur, R. Gaska, D. Maude Oct 2000

High Electron Mobility In Algan/Gan Heterostructures Grown On Bulk Gan Substrates, E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean, J. Massies, C. Skierbiszewski, T. Suski, I. Grzegory, S. Porowski, Grigory Simin, X. Hu, M. Asif Khan, M. S. Shur, R. Gaska, D. Maude

Faculty Publications

Dislocation-free high-quality AlGaN/GaN heterostructures have been grown by molecular-beam epitaxy on semi-insulating bulk GaN substrates. Hall measurements performed in the 300 K–50 mK range show a low-temperature electron mobility exceeding 60 000 cm2/V s for an electron sheet density of 2.4×1012 cm−2. Magnetotransport experiments performed up to 15 T exhibit well-defined quantum Hall-effect features. The structures corresponding to the cyclotron and spin splitting were clearly resolved. From an analysis of the Shubnikov de Hass oscillations and the low-temperature mobility we found the quantum and transport scattering times to be 0.4 and 8.2 ps, respectively. The …


Gan-Algan Heterostructure Field-Effect Transistors Over Bulk Gan Substrates, M. Asif Khan, J. W. Yang, W. Knap, E. Frayssinet, X. Hu, Grigory Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire, G. Neu Jun 2000

Gan-Algan Heterostructure Field-Effect Transistors Over Bulk Gan Substrates, M. Asif Khan, J. W. Yang, W. Knap, E. Frayssinet, X. Hu, Grigory Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire, G. Neu

Faculty Publications

We report on AlGaN/GaN heterostructures and heterostructurefield-effect transistors(HFETs) fabricated on high-pressure-grown bulk GaN substrates. The 2delectron gas channel exhibits excellent electronic properties with room-temperature electron Hall mobility as high as μ=1650 cm2/V s combined with a very large electron sheet density ns≈1.4×1013 cm−2.The HFET devices demonstrated better linearity of transconductance and low gate leakage, especially at elevated temperatures. We also present the comparative study of high-current AlGaN/GaN HFETs(nsμ>2×1016 V−1 s−1) grown on bulk GaN, sapphire, and SiC substrates under the same conditions. We demonstrate that in …


Accumulation Hole Layer In P-Gan/Algan Heterostructures, M. S. Shur, A. D. Bykhovski, R. Gaska, J. W. Yang, Grigory Simin, M. A. Khan May 2000

Accumulation Hole Layer In P-Gan/Algan Heterostructures, M. S. Shur, A. D. Bykhovski, R. Gaska, J. W. Yang, Grigory Simin, M. A. Khan

Faculty Publications

We present the results on piezoelectric and pyroelectricdoping in AlGaN-on-GaN and GaN-on-AlGaN heterostructures and demonstrate p-GaN/AlGaN structures with accumulation hole layer. Our results indicate that polarization charge can induce up to 5×1013 cm−2 holes at the AlGaN/GaN heterointerfaces. We show that the transition from three-dimensional (3D) to two-dimensional (2D) hole gas can be only achieved for hole sheet densities on the order of 1013 cm−2 or higher. At lower densities, only 3D-hole accumulation layer may exist. These results suggest that a piezoelectrically induced 2D-hole gas can be used for the reduction of the base spreading resistance …


Piezoelectric Doping In Alingan/Gan Heterostructures, M. Asif Khan, J. W. Yang, Grigory Simin, R. Gaska, M. S. Shur, A. D. Bykovski Nov 1999

Piezoelectric Doping In Alingan/Gan Heterostructures, M. Asif Khan, J. W. Yang, Grigory Simin, R. Gaska, M. S. Shur, A. D. Bykovski

Faculty Publications

We report on the piezoelectricdoping and two-dimensional (2D) electron mobility in AlInGaN/GaN heterostructures grown on 6H–SiC substrates. The contribution of piezoelectricdoping to the sheet electron density was determined using an In-controlled built-in strain-modulation technique. Our results demonstrate that in strained AlGaN/GaN heterostructures, the piezoelectric field generates at least 50% of the 2D electrons. The strain modulation changes the potential distribution at the heterointerface, which, in turn, strongly affects the 2D electron mobility, especially at cryogenic temperatures. The obtained results demonstrate the potential of strain engineering and piezoelectricdoping for GaN-based electronics.


Low‐Cost Technique For Preparing N‐Sb2S3/P‐Si Heterojunction Solar Cells, O. Savadogo, K. C. Mandal Jul 1993

Low‐Cost Technique For Preparing N‐Sb2S3/P‐Si Heterojunction Solar Cells, O. Savadogo, K. C. Mandal

Faculty Publications

No abstract provided.