Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics

External Link

Bradley Minch

2012

Threshold voltage

Articles 1 - 3 of 3

Full-Text Articles in Engineering

A Low-Voltage Mos Cascode Bias Circuit For All Current Levels, Bradley Minch Jul 2012

A Low-Voltage Mos Cascode Bias Circuit For All Current Levels, Bradley Minch

Bradley Minch

In this paper, the author describes a simple low-voltage MOS cascode bias circuit that functions well at all current levels, ranging from weak inversion to strong inversion. He describes an approach to defining the onset of saturation that is generally useful from a bias-circuit design viewpoint and explains specifically how it was used in designing the low-voltage cascode bias circuit. The author discusses an efficient strategy for laying out the cell in the full-stacked style. He also presents experimental results from a version of the bias circuit that was fabricated in a 1.2-μm CMOS process.


A Folded Floating-Gate Differential Pair For Low-Voltage Applications, Bradley Minch Jul 2012

A Folded Floating-Gate Differential Pair For Low-Voltage Applications, Bradley Minch

Bradley Minch

The author presents a new folded differential pair topology that is suitable for low-voltage applications. The new differential pair is made from floating-gate MOS (FGMOS) transistors and simultaneously provides a rail-to-rail common-mode input voltage range with a high rejection of the common-mode input voltage by keeping the sum of the two output currents fixed. Moreover, when biased in weak or moderate inversion, the allowable output voltage swing is also almost from rail-to-rail. The author discusses the operation of the circuit and some of the trade-offs involved in its design. He also shows experimental measurements from a version of the circuit, …


Floating-Gate Techniques For Assessing Mismatch, Bradley Minch Jul 2012

Floating-Gate Techniques For Assessing Mismatch, Bradley Minch

Bradley Minch

I discuss the importance of capacitor matching in the context of using charge stored on floating-gate MOS (FGMOS) transistors to compensate for transistor mismatch in analog circuits. I describe a simple technique that only involves static measurements for assessing the relative mismatch between capacitors. I also show experimental measurements of capacitor mismatch for small capacitors fabricated in 1.2-μm and 0.35-μm double-poly it n-well CMOS process that are commonly available.