Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Natural Language Processing For Novel Writing, Leqing Qu, Okan Ersoy Sep 2022

Natural Language Processing For Novel Writing, Leqing Qu, Okan Ersoy

Department of Electrical and Computer Engineering Technical Reports

No abstract provided.


Learning To Play An Imperfect Information Card Game Using Reinforcement Learning, Buğra Kaan Demi̇rdöver, Ömer Baykal, Ferdanur Alpaslan Sep 2022

Learning To Play An Imperfect Information Card Game Using Reinforcement Learning, Buğra Kaan Demi̇rdöver, Ömer Baykal, Ferdanur Alpaslan

Turkish Journal of Electrical Engineering and Computer Sciences

Artificial intelligence and machine learning are widely popular in many areas. One of the most popular ones is gaming. Games are perfect testbeds for machine learning and artificial intelligence with various scenarios and types. This study aims to develop a self-learning intelligent agent to play the Hearts game. Hearts is one of the most popular trick-taking card games around the world. It is an imperfect information card game. In addition to having a huge state space, Hearts offers many extra challenges due to its nature. In order to ease the development process, the agent developed in the scope of this …


Robust Explainability: A Tutorial On Gradient-Based Attribution Methods For Deep Neural Networks, Ian E. Nielsen, Dimah Dera, Ghulam Rasool, Nidhal Bouaynaya, Ravi P. Ramachandran Jun 2022

Robust Explainability: A Tutorial On Gradient-Based Attribution Methods For Deep Neural Networks, Ian E. Nielsen, Dimah Dera, Ghulam Rasool, Nidhal Bouaynaya, Ravi P. Ramachandran

Electrical and Computer Engineering Faculty Publications and Presentations

With the rise of deep neural networks, the challenge of explaining the predictions of these networks has become increasingly recognized. While many methods for explaining the decisions of deep neural networks exist, there is currently no consensus on how to evaluate them. On the other hand, robustness is a popular topic for deep learning research; however, it is hardly talked about in explainability until very recently. In this tutorial paper, we start by presenting gradient-based interpretability methods. These techniques use gradient signals to assign the burden of the decision on the input features. Later, we discuss how gradient-based methods can …


Growing Reservoir Networks Using The Genetic Algorithm Deep Hyperneat, Nancy L. Mackenzie May 2022

Growing Reservoir Networks Using The Genetic Algorithm Deep Hyperneat, Nancy L. Mackenzie

Student Research Symposium

Typical Artificial Neural Networks (ANNs) have static architectures. The number of nodes and their organization must be chosen and tuned for each task. Choosing these values, or hyperparameters, is a bit of a guessing game, and optimizing must be repeated for each task. If the model is larger than necessary, this leads to more training time and computational cost. The goal of this project is to evolve networks that grow according to the task at hand. By gradually increasing the size and complexity of the network to the extent that the task requires, we will build networks that are more …


Memristor-Based Htm Spatial Pooler With On-Device Learning For Pattern Recognition, Xiaoyang Liu, Yi Huang, Zhigang Zeng, Donald C. Wunsch Mar 2022

Memristor-Based Htm Spatial Pooler With On-Device Learning For Pattern Recognition, Xiaoyang Liu, Yi Huang, Zhigang Zeng, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

This article investigates hardware implementation of hierarchical temporal memory (HTM), a brain-inspired machine learning algorithm that mimics the key functions of the neocortex and is applicable to many machine learning tasks. Spatial pooler (SP) is one of the main parts of HTM, designed to learn the spatial information and obtain the sparse distributed representations (SDRs) of input patterns. The other part is temporal memory (TM) which aims to learn the temporal information of inputs. The memristor, which is an appropriate synapse emulator for neuromorphic systems, can be used as the synapse in SP and TM circuits. In this article, a …


A Neural Network Based Proportional Hazard Model For Iot Signal Fusion And Failure Prediction, Yuxin Wen, Xingxin Guo, Junbo Son, Jianguo Wu Jan 2022

A Neural Network Based Proportional Hazard Model For Iot Signal Fusion And Failure Prediction, Yuxin Wen, Xingxin Guo, Junbo Son, Jianguo Wu

Engineering Faculty Articles and Research

Accurate prediction of remaining useful life (RUL) plays a critical role in optimizing condition-based maintenance decisions. In this paper, a novel joint prognostic modeling framework that simultaneously combines both time-to-event data and multi-sensor degradation signals is proposed. With the increasing use of IoT devices, unprecedented amounts of diverse signals associated with the underlying health condition of in-situ units have become easily accessible. To take full advantage of the modern IoT-enabled engineering systems, we propose a specialized framework for RUL prediction at the level of individual units. Specifically, a Bayesian linear regression model is developed for the multi-sensor degradation signals and …


Non-Parametric Stochastic Autoencoder Model For Anomaly Detection, Raphael B. Alampay, Patricia Angela R. Abu Jan 2022

Non-Parametric Stochastic Autoencoder Model For Anomaly Detection, Raphael B. Alampay, Patricia Angela R. Abu

Department of Information Systems & Computer Science Faculty Publications

Anomaly detection is a widely studied field in computer science with applications ranging from intrusion detection, fraud detection, medical diagnosis and quality assurance in manufacturing. The underlying premise is that an anomaly is an observation that does not conform to what is considered to be normal. This study addresses two major problems in the field. First, anomalies are defined in a local context, that is, being able to give quantitative measures as to how anomalies are categorized within its own problem domain and cannot be generalized to other domains. Commonly, anomalies are measured according to statistical probabilities relative to the …


Arithfusion: An Arithmetic Deep Model For Temporal Remote Sensing Image Fusion, Md Reshad Ul Hoque, Jian Wu, Chiman Kwan, Krzysztof Koperski, Jiang Li Jan 2022

Arithfusion: An Arithmetic Deep Model For Temporal Remote Sensing Image Fusion, Md Reshad Ul Hoque, Jian Wu, Chiman Kwan, Krzysztof Koperski, Jiang Li

Electrical & Computer Engineering Faculty Publications

Different satellite images may consist of variable numbers of channels which have different resolutions, and each satellite has a unique revisit period. For example, the Landsat-8 satellite images have 30 m resolution in their multispectral channels, the Sentinel-2 satellite images have 10 m resolution in the pan-sharp channel, and the National Agriculture Imagery Program (NAIP) aerial images have 1 m resolution. In this study, we propose a simple yet effective arithmetic deep model for multimodal temporal remote sensing image fusion. The proposed model takes both low- and high-resolution remote sensing images at t1 together with low-resolution images at a …


Security Hardening Of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks, Ferhat Ozgur Catak, Murat Kuzlu, Haolin Tang, Evren Catak, Yanxiao Zhao Jan 2022

Security Hardening Of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks, Ferhat Ozgur Catak, Murat Kuzlu, Haolin Tang, Evren Catak, Yanxiao Zhao

Engineering Technology Faculty Publications

Next-generation communication networks, also known as NextG or 5G and beyond, are the future data transmission systems that aim to connect a large amount of Internet of Things (IoT) devices, systems, applications, and consumers at high-speed data transmission and low latency. Fortunately, NextG networks can achieve these goals with advanced telecommunication, computing, and Artificial Intelligence (AI) technologies in the last decades and support a wide range of new applications. Among advanced technologies, AI has a significant and unique contribution to achieving these goals for beamforming, channel estimation, and Intelligent Reflecting Surfaces (IRS) applications of 5G and beyond networks. However, the …


Explainable Data-Driven Motor Condition Monitoring And Fault Disgnosis, Yuming Wang Jan 2022

Explainable Data-Driven Motor Condition Monitoring And Fault Disgnosis, Yuming Wang

Theses and Dissertations--Electrical and Computer Engineering

Industrial motors are widely used in various fields such as power generation, mining, and manufacturing. Motor faults and time-consuming maintenance process will lead to serious economic losses in this context. To monitor motor faults and detect motor conditions, different types of sensors that can test vibration and current signals are mounted on motors. However, the main challenge was how to use information gained by sensors to analyze or diagnose motor conditions.

Machine learning is a popular technology in recent years, and it's very suitable for crunching and analyzing data. As an important subset of machine learning, deep learning is suitable …


Machine Learning Land Cover And Land Use Classification Of 4-Band Satellite Imagery, Lorelei Turner [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals Jan 2022

Machine Learning Land Cover And Land Use Classification Of 4-Band Satellite Imagery, Lorelei Turner [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals

Faculty Publications

Land-cover and land-use classification generates categories of terrestrial features, such as water or trees, which can be used to track how land is used. This work applies classical, ensemble and neural network machine learning algorithms to a multispectral remote sensing dataset containing 405,000 28x28 pixel image patches in 4 electromagnetic frequency bands. For each algorithm, model metrics and prediction execution time were evaluated, resulting in two families of models; fast and precise. The prediction time for an 81,000-patch group of predictions wasmodels, and >5s for the precise models, and there was not a significant change in prediction time when a …