Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Modeling Yield Of Carbon-Nanotube/Silicon-Nanowire Fet-Based Nanoarray Architecture With H-Hot Addressing Scheme, Shanrui Zhang, Minsu Choi, Nohpill Park Oct 2004

Modeling Yield Of Carbon-Nanotube/Silicon-Nanowire Fet-Based Nanoarray Architecture With H-Hot Addressing Scheme, Shanrui Zhang, Minsu Choi, Nohpill Park

Electrical and Computer Engineering Faculty Research & Creative Works

With molecular-scale materials, devices and fabrication techniques recently being developed, high-density computing systems in the nanometer domain emerge. An array-based nanoarchitecture has been recently proposed based on nanowires such as carbon nanotubes (CNTs) and silicon nanowires (SiNWs). High-density nanoarray-based systems consisting of nanometer-scale elements are likely to have many imperfections; thus, defect-tolerance is considered one of the most significant challenges. In this paper we propose a probabilistic yield model for the array-based nanoarchitecture. The proposed yield model can be used (1) to accurately estimate the raw and net array densities, and (2) to design and optimize more defect and fault-tolerant …


An Extrapolation Procedure To Shorten Time Domain Simulations, Giuseppe Selli, James L. Drewniak, David Pommerenke Aug 2004

An Extrapolation Procedure To Shorten Time Domain Simulations, Giuseppe Selli, James L. Drewniak, David Pommerenke

Electrical and Computer Engineering Faculty Research & Creative Works

Time-domain simulation algorithms are widely used in the anaylsis and design of electromagnetic systems. Many of them are characterized by high Q's. Thus, the simulations have to employ many time steps in order to achieve a complete characterization of these systems. This time-consuming computational effort can be avoided if the late instants of time are extrapolated by applying a parametric estimation algorithm. An optimized implementation of a time-domain extrapolation method and a stop criterion are discussed in this paper. The latter criterion is based upon a normalized squared difference between the waveforms extrapolated from two different sets of initial data …


Quantization With Knowledge Base Applied To Geometrical Nesting Problem, Grzegorz Chmaj, Leszek Koszalka Jan 2004

Quantization With Knowledge Base Applied To Geometrical Nesting Problem, Grzegorz Chmaj, Leszek Koszalka

Electrical & Computer Engineering Faculty Research

Nesting algorithms deal with placing two-dimensional shapes on the given canvas. In this paper a binary way of solving the nesting problem is proposed. Geometric shapes are quantized into binary form, which is used to operate on them. After finishing nesting they are converted back into original geometrical form. Investigations showed, that there is a big influence of quantization accuracy for the nesting effect. However, greater accuracy results with longer time of computation. The proposed knowledge base system is able to strongly reduce the computational time.


Evolving Models From Observed Human Performance, Hans Karl Gustav Fernlund Jan 2004

Evolving Models From Observed Human Performance, Hans Karl Gustav Fernlund

Electronic Theses and Dissertations

To create a realistic environment, many simulations require simulated agents with human behavior patterns. Manually creating such agents with realistic behavior is often a tedious and time-consuming task. This dissertation describes a new approach that automatically builds human behavior models for simulated agents by observing human performance. The research described in this dissertation synergistically combines Context-Based Reasoning, a paradigm especially developed to model tactical human performance within simulated agents, with Genetic Programming, a machine learning algorithm to construct the behavior knowledge in accordance to the paradigm. This synergistic combination of well-documented AI methodologies has resulted in a new algorithm that …


Autonomous Environmental Mapping In Multi-Agent Uav Systems, Linus Jan Luotsinen Jan 2004

Autonomous Environmental Mapping In Multi-Agent Uav Systems, Linus Jan Luotsinen

Electronic Theses and Dissertations

UAV units are by many researchers and aviation specialists considered the future and cutting edge of modern flight technology. This thesis discusses methods for efficient autonomous environmental mapping in a multi-agent domain. An algorithm that emphasizes on team work by sharing the agents local map information and exploration intentions is presented as a solution to the mapping problem. General theories on how to model and implement rational autonomous behaviour for UAV agents are presented. Three different human and tactical behaviour modeling techniques are evaluated. The author found the CxBR paradigm to be the most interesting approach. Also, in order to …