Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites …


Design, Fabrication, And Characterization Of Novel Optoelectronic Devices For Near-Infrared Detection, Ahmad Nusir May 2018

Design, Fabrication, And Characterization Of Novel Optoelectronic Devices For Near-Infrared Detection, Ahmad Nusir

Graduate Theses and Dissertations

Investigating semiconductor materials and devices at the nanoscale has become crucial in order to maintain the exponential development in today’s technology. There is a critical need for making devices lower in power consumption and smaller in size. Nanoscale semiconductor materials provide a powerful platform for optoelectronic device engineers. They own interesting properties which include enhanced photoconductivity and size-tunable interband transitions.

In this research, different types of nanostructures were investigated for optoelectronic devices: nanocrystals, nanowires, and thin-films. First, lead selenide nanocrystals with narrow bandgap were synthesized, size-tailored, and functionalized with molecular ligands for the application of uncooled near-infrared photodetectors. The devices …


Laser Direct Written Silicon Nanowires For Electronic And Sensing Applications, Woongsik Nam Aug 2016

Laser Direct Written Silicon Nanowires For Electronic And Sensing Applications, Woongsik Nam

Open Access Dissertations

Silicon nanowires are promising building blocks for high-performance electronics and chemical/biological sensing devices due to their ultra-small body and high surface-to-volume ratios. However, the lack of the ability to assemble and position nanowires in a highly controlled manner still remains an obstacle to fully exploiting the substantial potential of nanowires. Here we demonstrate a one-step method to synthesize intrinsic and doped silicon nanowires for device applications. Sub-diffraction limited nanowires as thin as 60 nm are synthesized using laser direct writing in combination with chemical vapor deposition, which has the advantages of in-situ doping, catalyst-free growth, and precise control of position, …


Elucidating Fundamental Mechanisms In Focused Electron- And Ion-Beam Induced Synthesis, Carlos M. Gonzalez Dec 2014

Elucidating Fundamental Mechanisms In Focused Electron- And Ion-Beam Induced Synthesis, Carlos M. Gonzalez

Doctoral Dissertations

A focused electron beam deposition process (FEBID) coupled with in-situ infrared pulsed laser assist (LA-EBID) has been implemented for higher purity tungsten nanowires using W(CO)6 [tungsten hexacarbonyl] as parent precursor gas. Nanowires made of Co from Co2(CO)8 [dicobalt octacarbonyl] and Pt from MeCpPtIVMe3 [trimethyl methylcyclopentadienyl platinum] have also been realized by using inert focused ion beams of helium and helium and neon, respectively. In all cases, higher electrical conductivities, higher purities and larger grain sizes have been obtained when compared with preceding traditional additive edit techniques. These new approaches will make possible successful nanoscale direct-write …


Copper Indium Diselenide Nanowire Arrays In Alumina Membranes Deposited On Molybdenum And Other Back Contact Substrates, Bhavananda R. Nadimpally Jan 2013

Copper Indium Diselenide Nanowire Arrays In Alumina Membranes Deposited On Molybdenum And Other Back Contact Substrates, Bhavananda R. Nadimpally

Theses and Dissertations--Electrical and Computer Engineering

Heterojunctions of CuInSe2 (CIS) nanowires with cadmium sulfide (CdS) were fabricated demonstrating for the first time, vertically aligned nanowires of CIS in the conventional Mo/CIS/CdS stack. These devices were studied for their material and electrical characteristics to provide a better understanding of the transport phenomena governing the operation of heterojunctions involving CIS nanowires. Removal of several key bottlenecks was crucial in achieving this. For example, it was found that to fabricate alumina membranes on molybdenum substrates, a thin interlayer of tungsten had to be inserted. A qualitative model was proposed to explain the difficulty in fabricating anodized aluminum oxide …


Vapor-Liquid-Solid(Vls) Grown Silica (Siox) Nanowires As The Interface For Biorecognition Molecules In Biosensors, Eduardo Murphy-Pérez Jan 2013

Vapor-Liquid-Solid(Vls) Grown Silica (Siox) Nanowires As The Interface For Biorecognition Molecules In Biosensors, Eduardo Murphy-Pérez

USF Tampa Graduate Theses and Dissertations

SiOx nanowires grown through the VLS mechanism were electrophoretically deposited on top of Au electrodes. GOx was immobilized using APTES and the EDC-NHS chemistry. Cyclic Voltammetry was used as the method to characterize the electrodes through their processing steps, and CV was also used to detect glucose in a PBS based solution. Ferro-Ferri Cyanide couple was used as the mediator.


Nanowire Giant Magnetoresistance Thin Films For Magnetic Sensors, Bryan Cox Jul 2012

Nanowire Giant Magnetoresistance Thin Films For Magnetic Sensors, Bryan Cox

Doctoral Dissertations

This dissertation details a novel method to fabricate magnetic sensors using nanowire giant magnetoresistance (GMR) thin films. In 1988, Albert Fert and Peter Grünberg both independently discovered a new physical phenomenon called GMR. GMR is a quantum mechanical effect found in thin film materials that are composed of alternating nanoscale ferromagnetic and non-magnetic conductive layers. When a GMR material is in the presence of a magnetic field, a change in electrical resistance is observed. The GMR effect has been utilized to produce magnetic sensors that have been used in a variety of applications, such as computer hard drive read heads, …


Zno Nanostructures: Growth, Characterization And Applications, Mikhail Ladanov Jan 2012

Zno Nanostructures: Growth, Characterization And Applications, Mikhail Ladanov

USF Tampa Graduate Theses and Dissertations

ZnO nanostructures have been investigated for quite a long time. However, only recently they triggered much interest due to advances in materials synthesis and characterization, as well as emerging demand for new nanostructured materials in novel device implementations.

A large part of the work was devoted to exploring new methodology for patterning growth sites and controlling nanowires morphology using the deposition methods that are compatible with integrated circuits (IC) processing. Microcontact printing was used to pattern the seeding layer, and, subsequently, ZnO nanowires through a resistless soft lithography process.

When considering hydrothermal growth of ZnO nanowires in the framework of …


Fabrication Of Horizontal Silicon Nanowires Using A Thin Aluminum Film As A Catalyst, Khaja Hafeezuddin Mohammed Dec 2011

Fabrication Of Horizontal Silicon Nanowires Using A Thin Aluminum Film As A Catalyst, Khaja Hafeezuddin Mohammed

Graduate Theses and Dissertations

Silicon nanowires have been the topic of research in recent years for their significant attention from the electronics industry to grow even smaller electronic devices. The semiconductor industry is built on silicon. Silicon nanowires can be the building blocks for future nanoelectronic devices. Various techniques have also been reported in fabricating the silicon nanowires. But most of the techniques reported, grow vertical silicon nanowires. In the semiconductor industry, integrated circuits are designed and fabricated in a horizontal architecture i.e. the device layout is flat compared to the substrate. When vertical silicon nanowires are introduced in the semiconductor industry, a whole …


Synthesis And Characterization Of P-Type Copper Indium Diselenide (Cis) Nanowires Embedded In Porous Alumina Templates, Sri Harsha Moturu Jan 2011

Synthesis And Characterization Of P-Type Copper Indium Diselenide (Cis) Nanowires Embedded In Porous Alumina Templates, Sri Harsha Moturu

University of Kentucky Master's Theses

This work focuses on a simple template assisted approach for fabricating I-III-VI semiconductor nanowire arrays. Vertically aligned nanowires of p-CIS of controllable diameter and thickness are electrodeposited, from an acidic electrolyte solution, inside porous aluminum templates using a three electrode set up with saturated calomel electrode as the reference. AAO template over ITO-glass was used as starting template for the device fabrication. The deposited CIS is annealed at different temperatures in a reducing environment (95% Ar+ 5% H2) for 30 minutes. X-ray diffraction of the nanowires showed nanocrystalline cubic phase structures with a strong orientation in the <112> direction. …


Synthesis, Processing And Characterization Of Silicon-Based Templated Nanowires, Jae Ho Lee Jan 2011

Synthesis, Processing And Characterization Of Silicon-Based Templated Nanowires, Jae Ho Lee

Legacy Theses & Dissertations (2009 - 2024)

Semiconductor and metallic nanowires have attracted substantial attention due to their wide variety of applications, ranging from nanoelectronics to energy storage devices. In particular, self-assembled silicon nanowires (SiNWs) may be an attractive alternative to conventionally processed planar silicon since SiNWs can potentially function as both the switch (i.e. transistor) and local interconnect (e.g. metal silicide nanowire) to form an inherently integrated nanoelectronic system. Also, hierarchical (branched) nanowire systems hold potential for catalysts or porous electrode applications for energy applications


Optical And Electrical Properties Of Compound And Transition Metal Doped Compound Semiconductor Nanowires, Sivakumar Ramanathan Feb 2009

Optical And Electrical Properties Of Compound And Transition Metal Doped Compound Semiconductor Nanowires, Sivakumar Ramanathan

Theses and Dissertations

Nanotechnology is the science and engineering of creating functional materials by precise control of matter at nanometer (nm) length scale and exploring novel properties at that scale. It is vital to understand the quantum mechanical phenomena manifested at nanometer scale dimensions since that will enable us to precisely engineer quantum mechanical properties to realize novel device functionalities. This dissertation investigates optical and electronic properties of compound and transition metal doped compound semiconductor nanowires with a view to exploiting them for a wide range of applications in semiconductor electronic and optical devices. In this dissertation work, basic concepts of optical and …


Synthesis And Characterization Of Schottky Diodes On N-Type Cdte Nanowires Embedded In Porous Alumina Templates, Srikanth Yanamanagandla Jan 2008

Synthesis And Characterization Of Schottky Diodes On N-Type Cdte Nanowires Embedded In Porous Alumina Templates, Srikanth Yanamanagandla

University of Kentucky Master's Theses

This work focuses on the growth of vertically aligned CdTe nanowire arrays of controllable diameter and length using cathodic electro deposition in anodized alumina templates. This step was followed by annealing at 250° C in a reducing environment (95% Ar + 5% H2). AAO template over ITO-glass was used as starting template for the device fabrication. The deposited nanowires showed nanocrystalline cubic phase structures with a strong preference in [111] direction. First gold (Au) was deposited into AAO using cathodic electro deposition. This was followed by CdTe deposition into the pore. Gold was deposited first as it aids the growth …


Study Of Interaction Between Indium Species And Dna In The Formation Of Dna -Templated Nanowires, Shivashankar Suryanarayanan Oct 2007

Study Of Interaction Between Indium Species And Dna In The Formation Of Dna -Templated Nanowires, Shivashankar Suryanarayanan

Doctoral Dissertations

A primary goal of semiconductor industry is to improve device performance and capability by downscaling feature size and upscaling packaging density. As optical-lithography, the mainstream technology for microfabrication, is being stretched to its limit, new unconventional fabrication techniques are being explored as alternatives. A "Bottom-up" approach for manufacturing is emerging as an answer to limitations posed by the traditional "Top-down" approach. Nanowires, bearing the potential of being the basic building blocks for such an approach, are gaining tremendous attention in nanoelectronics. Metal nanowires fabricated using DNA as templates have potential for precise control of length, diameter and positioning. However, wires …


Dna-Templated Assembly Of Metallic Nanowires, Qun Gu Jul 2005

Dna-Templated Assembly Of Metallic Nanowires, Qun Gu

Doctoral Dissertations

Nanowires are widely recognized as key elements in the development of futuristic nanoscale devices of nanoelectronics, optoelectronics and nano-electro-mechanic systems. Lithographic fabrication, however, faces increasing difficulties in the realization of continuously miniaturized features. The “Bottom-up” approach is a promising successor to lithography for fabrication of nanostructures. DNA is a natural template for nanowire assembly. The linear polynucleotide chain has a width of 2 nm and a length of 0.34 run per nucleoside subunit.

One-dimensional magnetic Co and Ni nanoparticles have been assembled in-situ for the first time by use of single DNA molecules as templates. Target metallic nanowires that are …