Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 249

Full-Text Articles in Engineering

Affordable Bioprint Head-Adapter For 3d Printers, Andrew Ceralde, Dominic Drake, Noah Engles, Mohammad Alwan, Nevada Perry May 2024

Affordable Bioprint Head-Adapter For 3d Printers, Andrew Ceralde, Dominic Drake, Noah Engles, Mohammad Alwan, Nevada Perry

Honors Capstones

Introduction: Addressing the need for affordable and accessible bioprinting technology, the Northern Illinois University bioprinting research and design project aims to democratize the field by developing an open source bioprint head. The initiative targets the prohibitive cost of commercial bioprinters by proposing an optimal design that can be integrated with widely available 3D printers, like the Creality Ender-3. This approach seeks to enable the widespread adoption of bioprinting technology, particularly for applications in tissue engineering and regenerative medicine.

Methods: Leveraging SolidWorks for design, the project employs a methodology that combines a precision extrusion system with thermal and UV crosslinking capabilities. …


Detection Of Unauthorized Transmissions In A Frequency Spectrum Using A Wireless Sensor Network, Benjamin Roehrig, Joel Brinkman, Dylan Zupec, Jannette Gonzalez May 2024

Detection Of Unauthorized Transmissions In A Frequency Spectrum Using A Wireless Sensor Network, Benjamin Roehrig, Joel Brinkman, Dylan Zupec, Jannette Gonzalez

Honors Capstones

A prototype for a wireless sensor network has been designed to detect and identify unauthorized wireless transmissions in a frequency spectrum. This prototype design is intended to detect unauthorized transmissions within the FM band of frequencies independently at individual nodes with Software Defined Radio receivers and transmit that information to a fusion center for aggregation using a Bluetooth Low Energy mesh network. Aggregated results will be displayed to the user through a Graphical User Interface at the fusion center.


Improving The Power Efficiency Of Woodward’S High-Power Inverter (Hpi) Using Algorithmic Part Selection., Jaron Holder, Ali Al Gazwi, John Childers, Jose Soublett May 2024

Improving The Power Efficiency Of Woodward’S High-Power Inverter (Hpi) Using Algorithmic Part Selection., Jaron Holder, Ali Al Gazwi, John Childers, Jose Soublett

Honors Capstones

Woodward Inc. is a secondary aerospace manufacturer based in the USA that specializes in aircraft power and control systems. This senior design project was concerned with a power systems platform currently in development by Woodward, the High-Power Inverter (HPI) system. In this report, the senior design group from Northern Illinois University (NIU) demonstrated the creation of an algorithmic part selection process to choose more power-efficient electrical components, the prototyping using MATLAB Simulink, and the practical testing that showed an increase of 7% in the power efficiency of the HPI system.


Detection Of Unauthorized Transmissions In A Frequency Spectrum Using Wireless Sensor Network, Joel Brinkman, Jannette Gonzalez, Benjamin Roehrig, Dylan Zupec May 2024

Detection Of Unauthorized Transmissions In A Frequency Spectrum Using Wireless Sensor Network, Joel Brinkman, Jannette Gonzalez, Benjamin Roehrig, Dylan Zupec

Honors Capstones

A prototype for a wireless sensor network has been designed to detect and identify unauthorized wireless transmissions in a frequency spectrum. This prototype design is intended to detect unauthorized transmissions within the FM band of frequencies independently at individual nodes with Software Defined Radio receivers and transmit that information to a fusion center for aggregation using a Bluetooth mesh network. Aggregated results will be displayed to the user through a Graphical User Interface at the fusion center.


Digital Beamforming Array Phase Calibration Techniques For Multi-Pass Interferometric Sar, Kelly Cheung Jan 2023

Digital Beamforming Array Phase Calibration Techniques For Multi-Pass Interferometric Sar, Kelly Cheung

Browse all Theses and Dissertations

Calibration plays a critical role in the optimal performance of algorithms in digital beamforming arrays. Phase incoherency between elements results in poor beamforming with decreased gain and higher sidelobes, leading to a decrease in accuracy and sensitivity of measurements. A similar problem exists in performing multi-pass interferometric SAR (IFSAR) processing of SAR data stacks to generate topological maps of the scene, where phase errors translate to height errors. By treating each SAR image in the data stack like an element of a uniform linear array, this thesis explores several phase calibration techniques that can be used to calibrate digital beamforming …


Bandgap Engineering Of 2d Materials And Its Electric And Optical Properties, Kumar Vishal Jan 2023

Bandgap Engineering Of 2d Materials And Its Electric And Optical Properties, Kumar Vishal

Browse all Theses and Dissertations

Since their invention in 1958, Integrated Circuits (ICs) have become increasingly more complex, sophisticated, and useful. As a result, they have worked their way into every aspect of our lives, for example: personal electronic devices, wearable electronics, biomedical sensors, autonomous driving cars, military and defense applications, and artificial intelligence, to name some areas of applications. These examples represent both collectively, and sometimes individually, multi-trillion-dollar markets. However, further development of ICs has been predicted to encounter a performance bottleneck as the mainstream silicon industry, approaches its physical limits. The state-of-the-art of today’s ICs technology will be soon below 3nm. At such …


Modeling, Simulation, And Hardware Testing Of A Noise-Canceller Adc Architecture, Ethan R. Rando Jan 2023

Modeling, Simulation, And Hardware Testing Of A Noise-Canceller Adc Architecture, Ethan R. Rando

Browse all Theses and Dissertations

Analog-to-Digital Converters (ADCs) are essential elements of most complex electronic devices. ADCs allow for an analog signal to be converted into the digital domain, and thus interpreted by a digital circuit or model. While ADCs are extremely common, they are not immune from common tradeoffs when being designed and implemented. The most prominent tradeoff when selecting or designing an ADC is whether to pursue a high conversion rate or a high resolution on the digital output. There are some ADC designs that allow for relatively high resolution while maintaining a respectable conversion rate, however these designs often come at the …


Multi-Variable Phase And Gain Calibration For Multi-Channel Transmit Signals, Ryan C. Ball Jan 2023

Multi-Variable Phase And Gain Calibration For Multi-Channel Transmit Signals, Ryan C. Ball

Browse all Theses and Dissertations

A method for software-defined radio array calibration is presented. The method implements a matched filter approach to calculate the phase shift between channels. The temporal stability of the system and calibration coefficients are shown through the standard deviation over the course of four weeks. The standard deviation of the phase correction was shown to be less than 2 deg. for most channels in the array and within 8 deg. for the most extreme case. The standard deviation in amplitude scaling was calculated to be less than 0.06 for all channels in the array. The performance of the calibration is evaluated …


Prediction Of Ka-Band Radar Cross Section With Thz Scale Models With Varying Surface Roughness, Andrew J. Huebner Jan 2023

Prediction Of Ka-Band Radar Cross Section With Thz Scale Models With Varying Surface Roughness, Andrew J. Huebner

Browse all Theses and Dissertations

Radar cross section (RCS) of electrically large targets can be challenging and expensive to measure. The use of scale models to predict the RCS of such large targets saves time and reduces facility requirements. This study investigates Ka-band (27 to 29 GHz) RCS prediction from scale model measurements at 500 to 750 GHz. Firstly, the coherent quasi-monostatic turntable RCS measurement system is demonstrated. Secondly, three aluminum 18:1 scale dihedrals with surface roughness up to 218 icroinches are measured to investigate how the roughness affects the Ka-band prediction. The measurements are compared to a parametric scattering model for the specular response, …


Fault Diagnosis And Accommodation In Quadrotor Simultaneous Localization And Mapping Systems, Anthony J. Green Jan 2023

Fault Diagnosis And Accommodation In Quadrotor Simultaneous Localization And Mapping Systems, Anthony J. Green

Browse all Theses and Dissertations

Simultaneous Localization and Mapping (SLAM) is the process of using distance measurements to points in the surrounding environment to build a digital map and perform localization. It has been observed that featureless environments like tunnels or straight hallways will cause positioning faults in SLAM. This research investigates the fault diagnosis and accommodation problem for a laser-rangefinder-based SLAM systems on a quadrotor. A potential solution of using optical flow as velocity estimate and an extended Kalman filter (EKF) to perform position estimation is proposed. A fault diagnosis method for detecting faults in positional SLAM data or optical flow velocity data is …


Reconfigurable Array Control Via Convolutional Neural Networks, Garrett A. Harris Jan 2022

Reconfigurable Array Control Via Convolutional Neural Networks, Garrett A. Harris

Browse all Theses and Dissertations

A method for the beam forming control of an array of reconfigurable antennas is presented. The method consists of using two parallel convolutional neural networks (CNNs) to analyze a desired radiation pattern image, or mask, and provide a suggestion for the reconfigurable element state, array shape, and steering weights necessary to obtain the radiation pattern. This research compares beam forming systems designed for three distinct element types: a patch antenna, a reconfigurable square spiral antenna restricted to a single reconfigurable state, and the fully reconfigurable square spiral. The parametric sweeps for the design of the CNNs are presented along with …


Amygdala Modeling With Context And Motivation Using Spiking Neural Networks For Robotics Applications, Matthew Aaron Zeglen Jan 2022

Amygdala Modeling With Context And Motivation Using Spiking Neural Networks For Robotics Applications, Matthew Aaron Zeglen

Browse all Theses and Dissertations

Cognitive capabilities for robotic applications are furthered by developing an artificial amygdala that mimics biology. The amygdala portion of the brain is commonly understood to control mood and behavior based upon sensory inputs, motivation, and context. This research builds upon prior work in creating artificial intelligence for robotics which focused on mood-generated actions. However, recent amygdala research suggests a void in greater functionality. This work developed a computational model of an amygdala, integrated this model into a robot model, and developed a comprehensive integration of the robot for simulation, and live embodiment. The developed amygdala, instantiated in the Nengo Brain …


Fault-Tolerant Control Of Autonomous Ground Vehicle Under Actuator And Sensor, Vaishnavi Janakiraman Jan 2022

Fault-Tolerant Control Of Autonomous Ground Vehicle Under Actuator And Sensor, Vaishnavi Janakiraman

Browse all Theses and Dissertations

Unmanned ground vehicles have a wide range of potential applications including autonomous driving, military surveillance, emergency responses, and agricultural robotics, etc. Since such autonomous vehicles need to operate reliably at all times, despite the possible occurrence of faulty behaviors in some system components, the development of fault-tolerant control schemes is a crucial step in ensuring reliable and safe operations. In this research, a fault-tolerant control scheme is developed for a nonlinear ground vehicle model with possible occurrence of both actuator faults in the form of loss of effectiveness (LOE) and sensor bias faults. Based on the vehicle and fault models …


The Theory And Design Of Class E Power Amplifiers For Impulse Excitation In Nuclear Magnetic Resonance, Owen D. Riemer Jan 2021

The Theory And Design Of Class E Power Amplifiers For Impulse Excitation In Nuclear Magnetic Resonance, Owen D. Riemer

Browse all Theses and Dissertations

A new method for analyzing the effectiveness of NMR impulse power amplifiers was developed using a classical linear systems approach to NMR. The method demonstrates a way to compare NMR power amplifiers and outputs. Thermodynamic calculations and the harmonic content of NMR amplifiers is presented to provide a complete description of the NMR power amplifier design problem. A design procedure for class E NMR power amplifiers with a pi-impedance matching network is outlined for matching the amplifier to the transmitter coil. The thesis concludes with the presentation of a 53 MHz power amplifier developed with the procedure. The complete amplifier …


Interferometry Analysis Method For Colliding Plasma Generated With Exploded Wires, Michael D. Gruesbeck Jan 2021

Interferometry Analysis Method For Colliding Plasma Generated With Exploded Wires, Michael D. Gruesbeck

Browse all Theses and Dissertations

Building upon recent work to estimate electron and ion densities from paired interferograms, the current work develops a model for the 2D interference phase function. Unlike the previous work that only estimated a radial plasma profile from images of a singly exploded straight Cu wire, we estimate 2D properties from a colliding plasma generated from two simultaneously exploded wires. First, a 2D phase model is proposed for the interference patterns of the images taken at 1064 nm and 532 nm. Then, the model parameters are estimated using Fourier analysis. Secondly, the plasma region in each image is partitioned into subregions …


Hardware Security And Side Channel Power Analysis For 16x16 Booth Multiplier In 65nm Cmos Technology, Kanchan Vissamsetty Jan 2021

Hardware Security And Side Channel Power Analysis For 16x16 Booth Multiplier In 65nm Cmos Technology, Kanchan Vissamsetty

Browse all Theses and Dissertations

As feature size is scaling down, dynamic power consumption reduces but static power consumption increases. Due to the increase of static power, leakage currents as a source, the information can be exploited successfully as a side-channel to recover the secrets of the cryptographic implementations. An attacker who has access to the hardware fabrication can insert a Trojan to the design to steal or alter information. In this thesis, a post-fab static voltage variation/detection technique is developed to detect the potential fabrication process Trojan insertion. The technique is, dividing the designed circuit into N equal segments, where each segment would have …


Reconfigurable Antenna Array Using The Pin-Diode-Switched Printed Square Spiral Element, Corey M. Stamper Jan 2021

Reconfigurable Antenna Array Using The Pin-Diode-Switched Printed Square Spiral Element, Corey M. Stamper

Browse all Theses and Dissertations

A dual-band array of reconfigurable elements is modeled and simulated. The array consists of four single square spiral microstrip antennas that are corporately fed and are used as a unit cell. The single square spiral uses two PIN diodes as switching elements to achieve reconfiguration. The array has four switch states that can operate over four discrete frequencies in the S and C bands. The unit cell radiation pattern is used with the pattern multiplication model to quickly simulate the array pattern of larger arrays. A 3 x 3 array of the unit cells is modeled with only the center …


Design And Simulation Of Boost Dc - Dc Pulse Width Modulator (Pwm) Feed-Forward Control Converter, Calenia L. Franklin Jan 2020

Design And Simulation Of Boost Dc - Dc Pulse Width Modulator (Pwm) Feed-Forward Control Converter, Calenia L. Franklin

Browse all Theses and Dissertations

Military aircraft systems’ power losses are occurring during the loading operations; loading and unloading causes the aircraft systems to lose power. The primary aircraft power source is provided by a 400Hz Ground Power Units (GPU). This GPU provides power to interior lighting, the aircraft cargo compartment, and other electrical systems (i.e. bus). The issues are during loading and unloading on the aircraft, which causes dropout of aircraft power supplied by the external 400Hz GPU. The majority of the military aircraft require a high voltage and a high current with a 270V power output. This thesis analyzes using Feed-Forward PWM Boost …


Mitigating Atmospheric Phase Errors In Sal Data, Randy S. Depoy Jr. Jan 2020

Mitigating Atmospheric Phase Errors In Sal Data, Randy S. Depoy Jr.

Browse all Theses and Dissertations

Synthetic aperture ladar (SAL) is an emerging remote sensing technology capable of providing high-resolution, interpretable, and timely imagery. SAL and synthetic aperture radar (SAR) are similar in that they provide high-resolution imagery suitable for a wide-variety of applications beyond the diffraction limit of the real aperture. Several advantages of SAL are; realistic imagery resulting from diffuse scattering of optically-rough objects, fine directionality of laser beam making the technology inherently low probability-of-detect, and shorter synthetic aperture collection times, all of which result from operating at optical as opposed to RF wavelengths. With the dramatic decrease in wavelength, SAL systems become more …


Comparing Rf Fingerprinting Performance Of Hobbyist And Commercial-Grade Sdrs, Travis R. Smith Jan 2020

Comparing Rf Fingerprinting Performance Of Hobbyist And Commercial-Grade Sdrs, Travis R. Smith

Browse all Theses and Dissertations

Radio Frequency Fingerprinting (RFF) research typically uses expensive, laboratory grade receivers which have high dynamic range, very stable oscillators, large instantaneous bandwidth, multi-rate sampling, etc. In this study, the RFF effectiveness of lower grade receivers is considered. Using software-defined radios (SDRs) of different cost and performance, a linear regression model is developed to predict RFF performance. Unlike two previous studies of SDR effectiveness that used commercial and lab-grade SDRs, the experiment here focused on hobbyist and commercial-grade SDRs (RTL-SDR, B200-mini, N210). A regression model is proposed for a generic SDR. Using a full-factorial experiment matrix, the gain, sample rate, and …


The Steady-State Analysis Of The Non-Isolated And Isolated Type Sepic Pwm Dc-Dc Converters For Ccm, Anuroop Reddy Dasari Jan 2020

The Steady-State Analysis Of The Non-Isolated And Isolated Type Sepic Pwm Dc-Dc Converters For Ccm, Anuroop Reddy Dasari

Browse all Theses and Dissertations

The purpose of this thesis is to develop the theory for analysing and designing the non-isolated and isolated type of SEPIC converters for continuous conduction mode (CCM). The non-isolated converter has single output. The isolated converter considered has two cases: single output and multi-output. The principle of operation of each circuit is explained during different time intervals of the switching cycle. The analytical expressions for various characteristics of the circuits are derived, such as: MV DC and MIDC of the lossless and lossy converter; average and peak-to-peak currents through the inductors, primary and secondary windings of the transformer; average and …


Analytical Approach To Multi-Objective Joint Inference Control For Fixed Wing Unmanned Aerial Vehicles, Julian L. Casey Jan 2020

Analytical Approach To Multi-Objective Joint Inference Control For Fixed Wing Unmanned Aerial Vehicles, Julian L. Casey

Browse all Theses and Dissertations

Fixed-wing Unmanned Aerial Vehicles (UAVs) have been found highly useful in various environments, including military and law enforcement. With the increased use of fixed-wing UAVs, there becomes an increased need to optimize the resources available. One approach to resource management is to create multi-objective flights. This thesis presents the design, analysis, and experimental implementation of multi-objective resource management for the resource of Range, distance available to the UAV, from the viewpoint of Intelligence Surveillance and Reconnaissance (ISR). First, a Simulation Environment is created capable of tracking multiple fixed-wing UAVs and to allow for the UAVs’ being controlled by an externally …


Quadrotor Uav Flight Control With Integrated Mapping And Path Planning Capabilities, Jason A. Gauthier Jan 2020

Quadrotor Uav Flight Control With Integrated Mapping And Path Planning Capabilities, Jason A. Gauthier

Browse all Theses and Dissertations

Quadrotor UAVs have become a common and easily acquirable hardware platform for research and development with control laws, mapping systems, and path planning. In this research, a non-linear model of a quadrotor UAV is linearized with model parameters being identified using collected flight data. The PID, LQR, and backstepping control laws are implemented. An adaptive control law is also implemented to handle the loss of effectiveness in motor actuation. Additionally, this research also implements a laser-based SLAM algorithm for mapping and localization in an unknown two-dimensional environment. Path planning and obstacle avoidance algorithms are implemented onboard using the Robot Operating …


Online Clustering With Bayesian Nonparametrics, Matthew D. Scherreik Jan 2020

Online Clustering With Bayesian Nonparametrics, Matthew D. Scherreik

Browse all Theses and Dissertations

Clustering algorithms, such as Gaussian mixture models and K-means, often require the number of clusters to be specified a priori. Bayesian nonparametric (BNP) methods avoid this problem by specifying a prior distribution over the cluster assignments that allows the number of clusters to be inferred from the data. This can be especially useful for online clustering tasks, where data arrives in a continuous stream and the number of clusters may dynamically change over time. Classical BNP priors often overestimate the number of clusters, however, leading researchers to develop new priors with more control over this tendency. To date, BNP algorithms …


Logistic Function Based Nonlinear Modeling And Circuit Analysis Of The Bipolar Vacancy Migration Memristor, Isaac P. Abraham Jan 2020

Logistic Function Based Nonlinear Modeling And Circuit Analysis Of The Bipolar Vacancy Migration Memristor, Isaac P. Abraham

Browse all Theses and Dissertations

Memristor is an acronym for memory resistor. Memristors promise to be building blocks for high density memory and analog computation. Hewlett Packard’s announcement in 2008 of having fabricated a memristor on an integrated circuit scale has created a tangible excitement in this field. Understanding and exploiting the full potential of these devices requires good compact models. Symbolic modeling provides a balance between achieving accurate empirical fit and generating closed form expressions. This dissertation simplifies the transport equation into a variable coefficient advection equation, very similar to a Burgers’ equation traditionally used in fluid dynamics. The Burgers’-like model reveals the dual …


Tapped-Inductor Buck Dc-Dc Converter, Ankit Chadha Jan 2019

Tapped-Inductor Buck Dc-Dc Converter, Ankit Chadha

Browse all Theses and Dissertations

There is a high demand for low step-down dc voltage conversions. Many conventional power converters that are currently being used have a moderate conversion ratio and this may not be sufficient to meet the demand. This can be achieved by either cascading power converters or using converters with a low step-down conversion ratio. Cascading the converters increases the power conversion stage complexity and increase the order of the system, while also affecting the stability. Using converters with a high conversion ratio seems to be a more intelligent option to root. This dissertation tackles to analyze one such converter, called tapped-inductor …


High Security Cognitive Radio Network Via Instantaneous Channel Information, Kaiyu Huang Jan 2019

High Security Cognitive Radio Network Via Instantaneous Channel Information, Kaiyu Huang

Browse all Theses and Dissertations

The cognitive radio network has been considered one of the most promising communication technologies for next generation wireless communication. One important aspect of cognitive radio network research is the so-called Primary User Authentication. Naturally, the primary user authentication in the cognitive radio network requires strong encryption. For the primary user identification, this dissertation provides a method which hides the user information in the header of the data frames with an underlay waveform. It is important to note that the underlay waveform will not bring redundancy data to the communication system. Using the synchronizing frequency as the underlay waveform carrier also …


Digital Instantaneous Frequency Measurement Receiver For Fine Frequency And High Sensitivity, Bilal Khudhur Abdulhammed Abdulhamed Jan 2019

Digital Instantaneous Frequency Measurement Receiver For Fine Frequency And High Sensitivity, Bilal Khudhur Abdulhammed Abdulhamed

Browse all Theses and Dissertations

Wideband technology has been applied to many wide bandwidth applications when there is a need to send much different information in a short time from one point and received from another point in high precision and accuracy. A wideband receiver reports a signal without tuning if the signal is within the input bandwidth. The analog Instantaneous Frequency Measurement (IFM) receiver has been used for decades to cover a very wide input bandwidth and report one accurate frequency on a short pulse at a time. The digital IFM use a high sampling rate ADC to operate in a wide bandwidth, Hilbert …


Fault-Tolerant Mapping And Localization For Quadrotor Uav, Maximillian Andrew Gilson Jan 2019

Fault-Tolerant Mapping And Localization For Quadrotor Uav, Maximillian Andrew Gilson

Browse all Theses and Dissertations

This research aims to accomplish three main tasks for a quadrotor UAV with mapping and navigation capabilities. Firstly, a Simultaneous Localization and Mapping (SLAM) system is developed utilizing a laser rangefinder an open source SLAM algorithm called GMapping. This system allows for mapping of the surrounding environment as well as localizing the position of the quadrotor, enabling position control. Secondly, several path planning algorithms were implemented and evaluated. This allows the quadrotor to navigate through the environment even in the presence of obstacles. Lastly, to compensate for possible faults in the SLAM measurements, a fault-tolerant control method is developed. Real-time …


Multifunctional Oxide Heterostructures For Next-Generation Tunable Rf/Microwave Electronics, Hyung Min Jeon Jan 2019

Multifunctional Oxide Heterostructures For Next-Generation Tunable Rf/Microwave Electronics, Hyung Min Jeon

Browse all Theses and Dissertations

Recent advanced radio frequency (RF) microwave device demands for low power consumption, light weight, compact package, and high performance. To achieve the high performance, applying magnetic materials is becoming indispensable in many of those devices. Thus, the role of magnetism in those devices is important high-quality magnetic materials not only improves the performance of microwave devices but also opens opportunities in developing novel concepts of devices utilizing spin wave excitation, non-reciprocal wave propagation, and the electromagnetic coupling in multiferroic materials. Among all the others, manipulating magnetic properties in multiferroic material started a couple years ago. Multiferroic materials are a group …