Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Theses/Dissertations

Additive manufacturing (AM)

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Control Of Gas Metal Arc Welding Using Process Sensing And Laser Arc Stabilization For Additive Manufacturing, Dale Brush Jan 2018

Control Of Gas Metal Arc Welding Using Process Sensing And Laser Arc Stabilization For Additive Manufacturing, Dale Brush

Graduate Theses & Non-Theses

The goal of the present research was to bridge the gap between powder-based and wire-based additive manufacturing (AM) processes using gas metal arc welding (GMAW). Powder-based AM processes typically can produce components with high geometric resolution (small features), but at low deposition rates. Wire-based AM processes typically can produce components with low geometric resolution, but at high deposition rates. AM with GMAW is a wire-based AM process in the wire arc additive manufacturing (WAAM) category of AM. To bridge the gap between powder-based and wire-based AM processes, GMAW’s deposition rate has to be reduced, allowing small features to be built. …


Engineered Nanocomposite Materials For Microwave/Millimeter-Wave Applications Of Fused Deposition Modeling, Juan De Dios Castro Mar 2017

Engineered Nanocomposite Materials For Microwave/Millimeter-Wave Applications Of Fused Deposition Modeling, Juan De Dios Castro

USF Tampa Graduate Theses and Dissertations

A variety of high-permittivity (high-k) and low-loss ceramic-thermoplastic composite materials as fused deposition modeling (FDM) feedstock, based on cyclo-olefin polymer (COP) embedded with sintered ceramic fillers, have been developed and investigated for direct digital manufacturing (DDM) of microwave components. The composites presented in this dissertation use a high-temperature sintering process up to 1500°C to further enhance the dielectric properties of the ceramic fillers. The electromagnetic (EM) properties of these newly developed FDM composites were characterized up to the Ku-band by using the cavity perturbation technique. Several models for prediction of the effective relative dielectric permittivity of composites based …