Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Design And Evaluation Of High Power, High Efficiency And High Power Density Motor Drives For More Electric Aircrafts, Zhao Yuan Dec 2020

Design And Evaluation Of High Power, High Efficiency And High Power Density Motor Drives For More Electric Aircrafts, Zhao Yuan

Graduate Theses and Dissertations

More-electric aircraft (MEA) is an attractive concept as it can reduce carbon dioxide emission, relieve fossil-fuel consumption, improve the overall efficiency of aircraft, and reduce the operational costs. However, it poses substantial challenges in designing a high-performance motor drive system for such applications. In the report of Aircraft Technology Roadmap to 2050, the propulsion converter is required to be ultra-high efficiency, high power density, and high reliability. Though the wide band-gap devices, such as the Silicon-carbide based Metal Oxide Silicon Field Effect (SiC-MOSFET), shows better switching performance and improved high-temperature performance compared to the silicon counterparts, applying it to the …


Methods For Dynamic Stabilization, Performance Improvement, And Load Power Sharing In Dc Power Distribution Systems, Hessamaldin Abdollahi Oct 2020

Methods For Dynamic Stabilization, Performance Improvement, And Load Power Sharing In Dc Power Distribution Systems, Hessamaldin Abdollahi

Theses and Dissertations

Modern DC power distribution systems (DC-PDS) offer high efficiency and flexibility which make them ideal for mission-critical applications such as on-board power systems of All-Electric ships, electric vehicles, More-Electric-Aircrafts, and DC Microgrids. Despite these attractive features, there are still challenges that need to be addressed. The two most important challenges are system stability and load power sharing. The stability and performance are of concern because DC-PDS are typically formed by the interconnection of several feedback-controlled power converters. The resulting interactions can lead to destabilizing dynamics. Likewise, in a DC-PDS there are several source converters that are operating in parallel to …


Conducted Emi Mitigation In Power Converters Using Active Emi Filters, Balaji Narayanasamy Jul 2020

Conducted Emi Mitigation In Power Converters Using Active Emi Filters, Balaji Narayanasamy

Graduate Theses and Dissertations

Wide bandgap devices enable high power density power converters. Despite the advantages of increased switching frequency, the passive components are still a major bottleneck towards enabling high power density. Among the passive components in the converter, the passive EMI filters are unavoidable to ensure compliance with conducted EMI standards. Active EMI filters help reduce the volume of the passive components and have been around for three decades now. Firstly, this work presents a summary of all the different active EMI filters based on the type of noise-sensing, noise-processing, the type of active circuits used and the type of control methods. …


Miso Dc-Dc Farmbot, Quyen Thi Nguyen, Brian Armijo, Astha Adhikari Jun 2020

Miso Dc-Dc Farmbot, Quyen Thi Nguyen, Brian Armijo, Astha Adhikari

Electrical Engineering

Making use of renewable energy directly from the location of production requires converting source power into usable power. The specific scope of this project focuses on the DC to DC conversion within a user friendly universal farmbot system. Since renewable sources vary widely in voltage and current, a wide input-range DC to DC converter is desired. Physical isolation, long lifespan, and adverse weather requires safe and reliable final product specifications. The goal of a very wide customer base drives the need for a product that does not require tinkering to get working, but to be usable out of the box …


A Hardware-In-The-Loop Platform For Dc Protection, Mark Vygoder May 2020

A Hardware-In-The-Loop Platform For Dc Protection, Mark Vygoder

Theses and Dissertations

With the proliferation of power electronics, dc-based power distribution systems can be realized; however, dc electrical protection remains a significant barrier to mass implementation dc power distribution. Controller Hardware-in-the-loop (CHiL) simulation enables moving up technology readiness levels (TRL) quickly. This work presents an end-to-end solution for dc protection CHiL for early design exploration and verification for dc protection, allowing for the rapid development of dc protection schemes for both Line-to-Line (LL) and Line-to-Ground (LG) faults. The approach combines using Latency Based Linear Multistep Compound (LB-LMC), a real-time simulation method for power electronic, and National Instruments (NI) FPGA hardware to enable …


Multiple Input Single Output Converter With Uneven Load Sharing Control For Improved System Efficiency, Kristen Y. Chan May 2020

Multiple Input Single Output Converter With Uneven Load Sharing Control For Improved System Efficiency, Kristen Y. Chan

Master's Theses

This paper presents the development and study of multiple-input single-output converter (MISO) for the DC House project that utilizes a controller to maximize the overall converter’s efficiency. The premise of this thesis is to create uneven load current sharing between the converters at different loading conditions in order to maximize the efficiency of the overall MISO converter. The goal is to find a proper ratio of current from each converter to the total load current of the MISO system to achieve the greatest efficiency. The Arduino microcontroller is implemented to achieve this goal. The design and operation of the MISO …


Cascaded Linear Regulator With Negative Voltage Tracking Switching Regulator, Ernest Lei May 2020

Cascaded Linear Regulator With Negative Voltage Tracking Switching Regulator, Ernest Lei

Master's Theses

DC-DC converters can be separated into two main groups: switching converters and linear regulators. Linear regulators such as Low Dropout Regulators (LDOs) are straightforward to implement and have a very stable output with low voltage ripple. However, the efficiency of an LDO can fluctuate greatly, as the power dissipation is a function of the device’s input and output. On the other hand, a switching regulator uses a switch to regulate energy levels. These types of regulators are more versatile when a larger change of voltage is needed, as efficiency is relatively stable across larger steps of voltages. However, switching regulators …