Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Vision-Based Autonomous Tracking Of A Non-Cooperative Mobile Robot By A Low-Cost Quadrotor Vehicle, Cheikhna Ahmed Tidiane Sy Nov 2019

Vision-Based Autonomous Tracking Of A Non-Cooperative Mobile Robot By A Low-Cost Quadrotor Vehicle, Cheikhna Ahmed Tidiane Sy

Electrical and Computer Engineering ETDs

The goal of this thesis is the detection and tracking of a ground vehicle, in particular a car-like robot, by a quadrotor. The first challenge to address in any pursuit or tracking scenario is the detection and unique identification of the target. From this first challenge, comes the need to precisely localize the target in a coordinate system that is common to the tracking and tracked vehicles. In most real-life scenarios, the tracked vehicle does not directly communicate information such as its position to the tracking one. From this fact, arises a non-cooperative constraint problem. The autonomous tracking aspect of …


Full-Pose Estimation And Tracking Control For A Multi-Rotor Aircraft Package Exchange, Trent P. Smith Aug 2019

Full-Pose Estimation And Tracking Control For A Multi-Rotor Aircraft Package Exchange, Trent P. Smith

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

In this work, research to develop algorithms for a package exchange maneuver between two quad-rotor aircraft is presented. First, the development of tools used for this research is discussed. Second, a controller is designed that synchronizes the flight paths and motion of two quad-rotor robots. The controller is used to guide a designated follower quad-rotor to follow a leader aircraft’s position and orientation. The follower aircraft is equipped with a simple mechanical manipulator to compensate for limitations in the aircrafts maneuverability. finally, a sensor architecture study for relative navigation of Unmanned Aerial Vehicles (UAV) is presented. The architecture study presents …


Viewpoint Optimization For Autonomous Strawberry Harvesting With Deep Reinforcement Learning, Jonathon J. Sather Jun 2019

Viewpoint Optimization For Autonomous Strawberry Harvesting With Deep Reinforcement Learning, Jonathon J. Sather

Master's Theses

Autonomous harvesting may provide a viable solution to mounting labor pressures in the United States' strawberry industry. However, due to bottlenecks in machine perception and economic viability, a profitable and commercially adopted strawberry harvesting system remains elusive. In this research, we explore the feasibility of using deep reinforcement learning to overcome these bottlenecks and develop a practical algorithm to address the sub-objective of viewpoint optimization, or the development of a control policy to direct a camera to favorable vantage points for autonomous harvesting. We evaluate the algorithm's performance in a custom, open-source simulated environment and observe affirmative results. Our trained …


Autonomous Combat Robot, Andrew J. Szabo Ii, Chris Heldman, Tristin Weber, Tanya Tebcherani, Holden Leblanc, Fabian Ardeljan Jan 2019

Autonomous Combat Robot, Andrew J. Szabo Ii, Chris Heldman, Tristin Weber, Tanya Tebcherani, Holden Leblanc, Fabian Ardeljan

Williams Honors College, Honors Research Projects

This honors project will also serve as an engineering senior design project.

The objective is to design and build the software and electrical systems for a 60 lb weight class combat robot that will function autonomously and outperform manually driven robots during competition.

While running autonomously, the robot will use LiDAR sensors to detect and attack opponent robots. This robot will also be able to be remote controlled in manual mode. This will mitigate the risk in case the autonomy or sensors fail. LED lights on the robot will indicate whether it is in autonomous or manual mode. The system …