Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Design & Evaluation Of A Hybrid Switched Capacitor Circuit With Wide-Bandgap Devices For Dc Grid Applications, Joshua L. Stewart Jul 2017

Design & Evaluation Of A Hybrid Switched Capacitor Circuit With Wide-Bandgap Devices For Dc Grid Applications, Joshua L. Stewart

Electrical and Computer Engineering ETDs

ABSTRACT

As technologies advance, the rate at which renewable power sources, such as solar photovoltaic (PV) and wind, are being added to the power grid is increasing. Typically, PV power plants require large inverters for direct current to alternating current (DC-AC) power conversion, as well as large transformers to step up voltages to the grid voltage. Offshore wind farms and large PV power plants in remote locations often aggregate power on a DC bus in order to improve efficiency and reduce the cost of power conversion hardware within the energy complex. However, the power must still be converted to AC …


Modeling And Charging Control Of A Lithium Ion Battery System For Solar Panels, Garrett David Heinen Jun 2017

Modeling And Charging Control Of A Lithium Ion Battery System For Solar Panels, Garrett David Heinen

Master's Theses

The advancement in solar panel and battery technology makes them useful for energy supply and storage. This thesis involves the modeling and charging control of a lithium ion battery system for solar panels. The proposed model is based on the parameters and characteristics of a realistic battery and solar panel system; and the hybrid control approach combines the advantages of the adaptive incremental conductance method and the perturb and observe method to track the maximum power point of the solar panel for charging the battery unit. Computer simulation results demonstrate that this proposed approach offers a faster convergence rate than …


Effective Pv Output Fluctuation Smoothing Based On Frequency Analysis And Different Weather Patterns, Kuei Hsu Kuo May 2017

Effective Pv Output Fluctuation Smoothing Based On Frequency Analysis And Different Weather Patterns, Kuei Hsu Kuo

Theses and Dissertations

As the Hybrid Energy Storage System (HESS) has the advantages of both power-based and energy-based energy storage devices. It is suitable for a microgrid to smooth the power fluctuation. Analyze the power data of a grid-connected photovoltaic (PV) power station. This research considers grid-connected PV requirements to join the HESS and take advantage of the HESS charge and discharge characteristics to reduce the problems caused by light intensity and temperature change of grid-connected PV power output fluctuations. Using battery optimization control strategies to reduce power and capacity of the HESS configuration. This paper Analyze the effect evaluation when HESS rated …


Structure Stability And Optical Response Of Lead Halide Hybrid Perovskite Photovoltaic Materials: A First-Principles Simulation Study, Siddharth Narendrakumar Rathod Jan 2017

Structure Stability And Optical Response Of Lead Halide Hybrid Perovskite Photovoltaic Materials: A First-Principles Simulation Study, Siddharth Narendrakumar Rathod

Browse all Theses and Dissertations

A third-generation of solar cell is based on organic-inorganic hybrid perovskite materials. These have reached up to 22.1% conversion efficiency through exponential growth just within the last decade, compared to much longer improvement times for other photovoltaic technologies. Lead halide perovskites are among the most commonly used materials in this context. Despite the relatively large number of available works on some of these materials, in particular CH3NH3PbI3, others are less investigated. Here, we focused on CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3 for assessing structure stability and optical response. Using quantum-mechanics-based first principles approaches, we calculated the optimized structures of these three materials …


Configuration And Electronic Properties Of The Interface Between Lead Iodide Hybrid Perovskite And Self-Assembled Monolayers In Solar Cells, Parin Divya Amlani Jan 2017

Configuration And Electronic Properties Of The Interface Between Lead Iodide Hybrid Perovskite And Self-Assembled Monolayers In Solar Cells, Parin Divya Amlani

Browse all Theses and Dissertations

Hybrid perovskite photovoltaic materials are currently the most promising functional materials for solar cell applications with efficiency reaching to those of more conventional materials such as silicon. Using self-assembled monolayers between photovoltaic materials and electrodes is a method for improving the stability and functionality. Recent experiments have shown that using 4-mercaptobenzoic acid and pentafluorobenzenethiol monolayers bridging lead iodide hybrid perovskite photovoltaic materials and electrodes result in improved stability and efficiency. The details of monolayer assembly, molecular adsorption configuration, and resulting modification of electronic properties are important characteristics related to solar cell performance. These characteristics can be obtained through accurate computer …