Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

A Dual Input Bidirectional Power Converter For Charging And Discharging A Phev Battery, Daniel Fain Aug 2009

A Dual Input Bidirectional Power Converter For Charging And Discharging A Phev Battery, Daniel Fain

All Theses

This thesis looks at a new design for a dual input bidirectional power converter (DIBPC) for charging and discharging a PHEV battery. The design incorporates a power factor correcting rectifier aimed at optimizing the battery charging efficiency from either a 120 VAC or 240 VAC source or discharging the battery to a usable AC voltage at 120 VAC. For simplicity and cost-effectiveness, the DIBPC is constructed using a standard IGBT 6-pack intended for motor control. The DIBPC is designed specifically to provide efficient operation with 120 VAC and 240 VAC inputs while achieving a very low THDI. The DIBPC also …


Novel Current-Fed Boundary-Mode Parallel-Resonant Push-Pull Converter, Jonathan David Paolucci Jun 2009

Novel Current-Fed Boundary-Mode Parallel-Resonant Push-Pull Converter, Jonathan David Paolucci

Master's Theses

The inherent difficulty in designing high voltage power supplies is often compounded by demands of high reliability, high performance, and safe functionality. A proposed high step-up ratio DC-DC converter meets the exacting requirements of applications such as uninterruptible power systems, radar, and pulsed power systems. The proposed DC-DC converter topology combines a multi-phase buck input stage with a novel self-tracking zero-voltage-switching (ZVS) resonant output stage. Traditionally, the inclusion of multiple power processing stages within a power supply topology severely degrades the overall converter efficiency. Due to the inherent high efficiency per stage, however, this effect is minimized. The self-tracking switching …


High Voltage Dc Converter Systems Modeling, Simulation And Analysis, Manish A. Dalal Jan 2009

High Voltage Dc Converter Systems Modeling, Simulation And Analysis, Manish A. Dalal

Browse all Theses and Dissertations

The thesis provides insights into important modeling techniques to model the converter system, machine design, control and power stages and integration of the various sub systems to simulate the system level performance. This innovative modeling and simulation project is very relevant to optimizing the system performance, designing the sub circuits, components selection, predicting the system stability and impulse responses. The thesis presents modeling and simulation of three different 270VDC converter systems and comparing their performances against each other. The 270VDC converter system accepts either Generator 3-phase AC voltages or fixed three voltage source followed by single or dual converter stages …