Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Theses and Dissertations

Theses/Dissertations

Graphene

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Nonreciprocal Electromagnetics Of Layered Media, Samaneh Pakniyat Aug 2022

Nonreciprocal Electromagnetics Of Layered Media, Samaneh Pakniyat

Theses and Dissertations

In plasmonic systems, interaction of light and surface plasmons leads to excitation of surface plasmon polaritons (SPPs) carrying energy on the surface. In an isotropic plasmonic system, the SPPs optical response is reciprocal, which means that the forward and backward surface waves have identical propagation behaviors and SPPs refract when they encounter a discontinuity on the surface. In order to excite SPPs resilient to the surface disorders, the system reciprocity needs to be broken by different techniques such as applying an external magnetic bias. In this case, the plasmonic system becomes a gyrotropic medium. Recently, it has been shown that …


The Hybridization Of A Graphene And Silicon Carbide Schottky Optoelectronic Device By The Incorporation Of A Lead Sulfide Quantum Dot Film, Joshua Letton Jul 2020

The Hybridization Of A Graphene And Silicon Carbide Schottky Optoelectronic Device By The Incorporation Of A Lead Sulfide Quantum Dot Film, Joshua Letton

Theses and Dissertations

The work that follows examines the impact of lead sulfide quantum dots on a native epitaxial graphene (EG) SiC Schottky device, resulting in a hybrid optoelectronic device which presents a possible avenue towards a novel hybrid carbide-based Schottky solar cell. The active (n-type SiC) and contact (graphene) layers for the Schottky junction of the device were grown epitaxially using a novel technique incorporating tetrafluorosilane (TFS) as a precursor gas. The bare EG/SiC device was characterized based on its I-V behavior in dark and under illumination for both forward and reverse bias conditions. The initial characterization demonstrated the expected Schottky diode …


Study Of Mos2 And Graphene-Based Heterojunctions For Electronic And Sensing Applications, Ifat Jahangir Jan 2017

Study Of Mos2 And Graphene-Based Heterojunctions For Electronic And Sensing Applications, Ifat Jahangir

Theses and Dissertations

Since the discovery of graphene, there has been an increase in two-dimensional (2D) materials research for their scalability down to atomic dimensions. Among the analogs of graphene, transition metal dichalcogenides (TMDs) are attractive due to their exceptional electronic and optoelectronic properties. MoS2, a TMD, has several advantages over graphene and the industry workhorse Si, and has been reported to demonstrate excellent transistor performances. The key obstacle in the commercialization of MoS2 technology is low carrier mobility over large areas for top-down devices. Although there were several early reports on synthesis of atomically thin MoS2 with moderate mobility, transferring large area …


Graphene Based Heterojunctions For Nano-Electronic And Sensing Applications, Md A. Uddin Jan 2015

Graphene Based Heterojunctions For Nano-Electronic And Sensing Applications, Md A. Uddin

Theses and Dissertations

Graphene, an atomically thin and semi-metallic two dimensional material, has been extensively researched over the past decade due to its superior intrinsic carrier velocity, electrical and chemically tunable work function, ability to form layered heterostructure with other materials, and relevant potential applications in electronics, sensing, optoelectronics, energy storage, etc. However, the confinement of charge carriers within one atomic layer results in an electrical transport that is extremely sensitive to the surrounding environment, which is beneficial for sensing applications, but at times unfavorable for electronic applications due to scattering from extrinsic impurities. In addition, due to its rather delicate structure, engineering …


A Novel Transport Based Model For Wire Media And Its Application To Scattering Problems, Ebrahim Forati Dec 2014

A Novel Transport Based Model For Wire Media And Its Application To Scattering Problems, Ebrahim Forati

Theses and Dissertations

Artificially engineered materials, known as metamaterials, have attracted the interest of researchers because of the potential for novel applications. Effective modeling of metamaterials is a crucial step for analyzing and synthesizing devices. In this thesis, we focus on wire medium (both isotropic and uniaxial) and validate a novel transport based model for them.

Scattering problems involving wire media are computationally intensive due to the spatially dispersive nature of homogenized wire media. However, it will be shown that using the new model to solve scattering problems can simplify the calculations a great deal.

For scattering problems, an integro-differential equation based on …


Defect Mediated Electrochemical Hydrogenation Of Epitaxial Graphene: Towards Graphene Based Microbial Fuel Cells, Kevin Michael Daniels Jan 2014

Defect Mediated Electrochemical Hydrogenation Of Epitaxial Graphene: Towards Graphene Based Microbial Fuel Cells, Kevin Michael Daniels

Theses and Dissertations

Microbial fuel cells (MFCs) are seen as a promising complementary technology to alleviate the exponentially increasing worldwide energy demand. MFCs use bacteria to extract energy from biomass, where choice of electrode materials has a strong impact on energy extraction and efficiency. Graphene, a single monolayer of carbon with exceptional electrical conductivity and high surface area, is seen as a promising material with the potential of improving charge transfer and bacterial adhesion. To probe this reactivity, a novel means of hydrogenation of graphene by electrochemistry is demonstrated.

In this thesis, electrochemical hydrogenation of epitaxial graphene (EG), graphene grown on silicon carbide …