Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

LSU Master's Theses

Graphene

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Photo-Effects On Current Transport In Back-Gate Graphene Field-Effect Transistor, Xinlu Chen Jan 2017

Photo-Effects On Current Transport In Back-Gate Graphene Field-Effect Transistor, Xinlu Chen

LSU Master's Theses

Graphene, which has attracted wide attention because of its two-dimensional structure and high carrier mobility, is a promising candidate for potential application in optics and electronics. In this dissertation, the photonic effects on current transport in back-gate graphene field-effect transistor is investigated. Chemical vapor deposition (CVD) on metal provides a promising way for large area, controllability and high quality graphene film. The transfer and back-gate transistor fabrication processes are proposed in this dissertation. The theoretical analysis of photodetector based on back-gate graphene field-effect transistor has been done. It is shown that the photo-electronic current consists of current contributions from photovoltaic, …


Aperiodic Multilayer Graphene Based Tunable And Switchable Thermal Emitter At Mid-Infrared Frequencies, Safura Sharifi Jan 2017

Aperiodic Multilayer Graphene Based Tunable And Switchable Thermal Emitter At Mid-Infrared Frequencies, Safura Sharifi

LSU Master's Theses

Over the past few decades, there have been tremendous innovations in electronics and photonics. The development of these ultra-fast growing technologies mostly relies on fundamental understanding of novel materials with unique properties as well as new designs of device architectures with more diverse and better functionalities. In this regard, the promising approach for next-generation nanoscale electronics and photonics is to exploit the extraordinary characteristics of novel nanomaterials. There has been an explosion of interest in graphene for photonic applications as it provides a degree of freedom to manipulate electromagnetic waves. In this thesis, to tailor the broadband blackbody radiation, new …


Near Total Resonant Light Absorption In A Graphene Monolayer At Multiple Tunable Wavelengths With Multilayer Structures, Iman Zand Jan 2015

Near Total Resonant Light Absorption In A Graphene Monolayer At Multiple Tunable Wavelengths With Multilayer Structures, Iman Zand

LSU Master's Theses

Graphene could be potentially important for a broad range of photonic and optoelectronic applications. For such graphene-based applications it is critical to enhance the absorption of light in graphene monolayers in order to achieve near total absorption. Several structures have been proposed to enhance light absorption in graphene at visible and infrared wavelengths such as one-dimensional Fabry-Perot cavity structures, and photonic crystal slabs. Fabry-Perot cavity structures, which employ periodic Bragg mirrors, can lead to near total light absorption on resonance. However, such structures cannot achieve near complete absorption in graphene at multiple closely-spaced tunable wavelengths, which is potentially important for …