Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Engineering

E700xd Portable Doppler Radar Energy Systems Analysis, Brandon M. Bailey [*], Torrey J. Wagner, Jada Williams Dec 2019

E700xd Portable Doppler Radar Energy Systems Analysis, Brandon M. Bailey [*], Torrey J. Wagner, Jada Williams

Faculty Publications

Occurring in industrialized nations, inexpensive and abundantly available power is routinely taken for granted. However, energy resilience and to a lesser extent price are key concerns when considering potential solutions for disaster response, disaster relief, or military operations. The Department of Defense (DoD) currently uses a 5 kW generator to power the E700XD portable Doppler radar system when grid power is unavailable [1]. While the radar has an approximate power consumption of 2.5 kW, there is a potential for higher demand due to weather conditions [2]. This paper examines the cost of operating a currently installed generator, compared to the …


Generating Electromagnetic Nonuniformly Correlated Beams, Milo W. Hyde Iv, Xifeng Xiao, David G. Voelz Dec 2019

Generating Electromagnetic Nonuniformly Correlated Beams, Milo W. Hyde Iv, Xifeng Xiao, David G. Voelz

Faculty Publications

We develop a method to generate electromagnetic nonuniformly correlated (ENUC) sources from vector Gaussian Schell-model (GSM) beams. Having spatially varying correlation properties, ENUC sources are more difficult to synthesize than their Schell-model counterparts (which can be generated by filtering circular complex Gaussian random numbers) and, in past work, have only been realized using Cholesky decomposition—a computationally intensive procedure. Here we transform electromagnetic GSM field instances directly into ENUC instances, thereby avoiding computing Cholesky factors resulting in significant savings in time and computing resources. We validate our method by generating (via simulation) an ENUC beam with desired parameters. We find the …


Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory Nov 2019

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory

Faculty Publications

Radiation effects on graphene field effect transistors (GFETs) with hexagonal boron nitride (h-BN) thin film substrates are investigated using 60Co gamma-ray radiation. This study examines the radiation response using many samples with varying h-BN film thicknesses (1.6 and 20 nm thickness) and graphene channel lengths (5 and 10 μm). These samples were exposed to a total ionizing dose of approximately 1 Mrad(Si). I-V measurements were taken at fixed time intervals between irradiations and postirradiation. Dirac point voltage and current are extracted from the I-V measurements, as well as mobility, Dirac voltage hysteresis, and the total number of GFETs that remain …


Multiple Pursuer Multiple Evader Differential Games, Eloy Garcia, David Casbeer, Alexander Von Moll, Meir Pachter Nov 2019

Multiple Pursuer Multiple Evader Differential Games, Eloy Garcia, David Casbeer, Alexander Von Moll, Meir Pachter

Faculty Publications

In this paper an N-pursuer vs. M-evader team conflict is studied. The differential game of border defense is addressed and we focus on the game of degree in the region of the state space where the pursuers are able to win. This work extends classical differential game theory to simultaneously address weapon assignments and multi-player pursuit-evasion scenarios. Saddle-point strategies that provide guaranteed performance for each team regardless of the actual strategies implemented by the opponent are devised. The players' optimal strategies require the co-design of cooperative optimal assignments and optimal guidance laws. A representative measure of performance is proposed and …


Measurement Of Electron Density And Temperature From Laser-Induced Nitrogen Plasma At Elevated Pressure (1–6 Bar), Ashwin P. Rao [*], Mark Gragston, Anil K. Patnaik, Paul S. Hsu, Michael B. Shattan Nov 2019

Measurement Of Electron Density And Temperature From Laser-Induced Nitrogen Plasma At Elevated Pressure (1–6 Bar), Ashwin P. Rao [*], Mark Gragston, Anil K. Patnaik, Paul S. Hsu, Michael B. Shattan

Faculty Publications

Laser-induced plasmas experience Stark broadening and shifts of spectral lines carrying spectral signatures of plasma properties. In this paper, we report time-resolved Stark broadening measurements of a nitrogen triplet emission line at 1–6 bar ambient pressure in a pure nitrogen cell. Electron densities are calculated using the Stark broadening for different pressure conditions, which are shown to linearly increase with pressure. Additionally, using a Boltzmann fit for the triplet, the electron temperature is calculated and shown to decrease with increasing pressure. The rate of plasma cooling is observed to increase with pressure. The reported Stark broadening based plasma diagnostics in …


Adaptive-Hybrid Redundancy With Error Injection, Nicholas S. Hamilton, Scott R. Graham, Timothy Carbino, James C. Petrosky, J. Addison Betances Nov 2019

Adaptive-Hybrid Redundancy With Error Injection, Nicholas S. Hamilton, Scott R. Graham, Timothy Carbino, James C. Petrosky, J. Addison Betances

Faculty Publications

Adaptive-Hybrid Redundancy (AHR) shows promise as a method to allow flexibility when selecting between processing speed and energy efficiency while maintaining a level of error mitigation in space radiation environments. Whereas previous work demonstrated AHR’s feasibility in an error free environment, this work analyzes AHR performance in the presence of errors. Errors are deliberately injected into AHR at specific times in the processing chain to demonstrate best and worst case performance impacts. This analysis demonstrates that AHR provides flexibility in processing speed and energy efficiency in the presence of errors


Insulation Sensitivity Analysis For An Optimized Fabric Shelter Off-Grid Hybrid Energy System, Jay F. Pearson [*], Torrey J. Wagner, Steven Schuldt Oct 2019

Insulation Sensitivity Analysis For An Optimized Fabric Shelter Off-Grid Hybrid Energy System, Jay F. Pearson [*], Torrey J. Wagner, Steven Schuldt

Faculty Publications

During military and disaster relief operations, connecting to an established electrical grid is rarely an option. In these situations, camps consisting of poorly insulated fabric shelters are predominantly powered by inefficient diesel generators that require frequent fuel resupply. In order to reduce the fuel demand of these generators, camps may utilize photovoltaic-battery systems. This paper presents an innovative cost-performance model capable of optimizing solar array size, battery backup system, and shelter insulation type to minimize the operating cost of powering a single fabric shelter. Model performance was evaluated using one year of insolation, weather and energy requirement data from a …


Nonlinearities And Carrier Dynamics In Refractory Plasmonic Tin Thin Films, Heather George, Jennifer Reed, Manuel R. Ferdinandus, Clayton Devault, Alexei Lagutchev, Augustine Urbas, Theodore B. Norris, Vladimir M. Shalaev, Alexandra Boltasseva, Nathaniel Kinsey Oct 2019

Nonlinearities And Carrier Dynamics In Refractory Plasmonic Tin Thin Films, Heather George, Jennifer Reed, Manuel R. Ferdinandus, Clayton Devault, Alexei Lagutchev, Augustine Urbas, Theodore B. Norris, Vladimir M. Shalaev, Alexandra Boltasseva, Nathaniel Kinsey

Faculty Publications

Titanium nitride is widely used in plasmonic applications, due to its robustness and optical properties which resemble those of gold. Despite this interest, the nonlinear properties have only recently begun to be investigated. In this work, beam deflection and non-degenerate femtosecond pump-probe spectroscopy (800 nm pump and 650 nm probe) were used to measure the real and imaginary transient nonlinear response of 30-nm-thick TiN films on sapphire and fused silica in the metallic region governed by Fermi-smearing nonlinearities. In contrast to other metals, it is found that TiN exhibits non-instantaneous positive refraction and reverse saturable absorption whose relaxation is dominated …


Near-Field Effects On Partially Coherent Light Scattered By An Aperture, Milo W. Hyde Iv, Michael J. Havrilla Aug 2019

Near-Field Effects On Partially Coherent Light Scattered By An Aperture, Milo W. Hyde Iv, Michael J. Havrilla

Faculty Publications

We investigate how the near field affects partially coherent light scattered from an aperture in an opaque screen. Prior work on this subject has focused on the role of surface plasmons, and how they affect spatial coherence is well documented. Here, we consider other near-field effects that might impact spatial coherence. We do this by examining the statistics of the near-zone field scattered from an aperture in a perfect electric conductor plane—a structure that does not support surface plasmons. We derive the near-field statistics (in particular, cross-spectral density functions) by applying electromagnetic equivalence theorems and the Method of Moments. We …


Subsurface Mimo: A Beamforming Design In Internet Of Underground Things For Digital Agriculture Applications, Abdul Salam Aug 2019

Subsurface Mimo: A Beamforming Design In Internet Of Underground Things For Digital Agriculture Applications, Abdul Salam

Faculty Publications

In underground (UG) multiple-input and multiple-output (MIMO), the transmit beamforming is used to focus energy in the desired direction. There are three different paths in the underground soil medium through which the waves propagates to reach at the receiver. When the UG receiver receives a desired data stream only from the desired path, then the UG MIMO channel becomes three path (lateral, direct, and reflected) interference channel. Accordingly, the capacity region of the UG MIMO three path interference channel and degrees of freedom (multiplexing gain of this MIMO channel requires careful modeling). Therefore, expressions are required for the degree of …


3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak Jul 2019

3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak

Faculty Publications

In this paper we present a design concept for 3D plasmonic scatterers as high- efficiency transmissive metasurface (MS) building blocks. A genetic algorithm (GA) routine partitions the faces of the walls inside an open cavity into a M x N grid of voxels which can be either covered with metal or left bare, and optimizes the distribution of metal coverage needed to generate electric and magnetic modes of equal strength with a targeted phase delay (Φt) at the design wavelength. Even though the electric and magnetic modes can be more complicated than typical low order modes, with their spectral overlap …


Analyzing The Efficiency Of Horizontal Photovoltaic Cells In Various Climate Regions, Parker A. Hines, Torrey J. Wagner, Clay M. Koschnick, Steven J. Schuldt Jun 2019

Analyzing The Efficiency Of Horizontal Photovoltaic Cells In Various Climate Regions, Parker A. Hines, Torrey J. Wagner, Clay M. Koschnick, Steven J. Schuldt

Faculty Publications

This research presents the development of linear regression models to predict horizontal photovoltaic power output. We collected a dataset from 14 global Department of Defense (DoD) installations over a timeframe of one year using an experimental apparatus, resulting in 24,179 usable data points. We developed a linear model to predict power output, which incorporated site-specific weather and geographical characteristics, along with Köppen-Geiger climate classifications in order to determine the effect of adding climate to the model. After performing a Wald test between the full model and a reduced model without Köppen-Geiger climate variables, it was determined that including Köppen-Geiger climate …


A Cooperative Overlay Approach At The Physical Layer Of Cognitive Radio For Digital Agriculture, Abdul Salam, Umit Karabiyik May 2019

A Cooperative Overlay Approach At The Physical Layer Of Cognitive Radio For Digital Agriculture, Abdul Salam, Umit Karabiyik

Faculty Publications

In digital agriculture, the cognitive radio technology is being envisaged as solution to spectral shortage problems by allowing agricultural cognitive users to co-exist with noncognitive users in the same spectrum on the field. Cognitive radios increase system capacity and spectral efficiency by sensing the spectrum and adapting the transmission parameters. This design requires a robust, adaptable and flexible physical layer to support cognitive radio functionality. In this paper, a novel physical layer architecture for cognitive radio based on cognition, cooperation, and cognitive interference avoidance has been developed by using power control for digital agriculture applications. The design is based on …


Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah Apr 2019

Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah

Faculty Publications

The extra quantities of wastewater entering the pipes can cause backups that result in sanitary sewer overflows. Urban underground infrastructure monitoring is important for controlling the flow of extraneous water into the pipelines. By combining the wireless underground communications and sensor solutions, the urban underground IoT applications such as real time wastewater and storm water overflow monitoring can be developed. In this paper, the path loss analysis of wireless underground communications in urban underground IoT for wastewater monitoring has been presented. It has been shown that the communication range of up to 4 kilometers can be achieved from an underground …


Distribution Of Bit Patterns In Binary Sequence Generated Over Sub Extension Field, Md. Arshad Ali, Yuta Kodera, Yasuyuki Nogami, Satoshi Uehara, Robert Morelos-Zaragoza Apr 2019

Distribution Of Bit Patterns In Binary Sequence Generated Over Sub Extension Field, Md. Arshad Ali, Yuta Kodera, Yasuyuki Nogami, Satoshi Uehara, Robert Morelos-Zaragoza

Faculty Publications

The distribution of bit patterns is an important measure to check the randomness of a sequence. The authors of this paper observed this crucial property in a binary sequence which generated by using a primitive polynomial, trace function, and Legendre symbol defined over the sub extension field. The authors create a new dimension in the sequence generation research area by considering the sub extension field, whereas all our previous works are focused in the prime field. In terms of the distribution of bit patterns property, this research work has notable outcomes more specifically the binary sequence (defined over the sub …


An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam Apr 2019

An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam

Faculty Publications

Underground sensing and propagation of Signals in the Soil (SitS) medium is an electromagnetic issue. The path loss prediction with higher accuracy is an open research subject in digital agriculture monitoring applications for sensing and communications. The statistical data are predominantly derived from site-specific empirical measurements, which is considered an impediment to universal application. Nevertheless, in the existing literature, statistical approaches have been applied to the SitS channel modeling, where impulse response analysis and the Friis open space transmission formula are employed as the channel modeling tool in different soil types under varying soil moisture conditions at diverse communication distances …


Underground Environment Aware Mimo Design Using Transmit And Receive Beamforming In Internet Of Underground Things, Abdul Salam Apr 2019

Underground Environment Aware Mimo Design Using Transmit And Receive Beamforming In Internet Of Underground Things, Abdul Salam

Faculty Publications

In underground (UG) multiple-input and multiple-output (MIMO), the transmit beamforming is used to focus energy in the desired direction. There are three different paths in the underground soil medium through which the waves propagates to reach at the receiver. When the UG receiver receives a desired data stream only from the desired path, then the UG MIMO channel becomes three path (lateral, direct, and reflected) interference channel. Accordingly, the capacity region of the UG MIMO three path interference channel and degrees of freedom (multiplexing gain of this MIMO channel requires careful modeling). Therefore, expressions are required derived the degrees of …


36% Reduction In Fuel Resupply Using A Hybrid Generator & Battery System For An Austere Location, David J. Chester [*], Torrey J. Wagner, Douglas S. Dudis Mar 2019

36% Reduction In Fuel Resupply Using A Hybrid Generator & Battery System For An Austere Location, David J. Chester [*], Torrey J. Wagner, Douglas S. Dudis

Faculty Publications

The DOD energy policy is to increase energy security resiliency, and mitigate costs in the use and management of energy[1] Forward operating bases (FOBs) are remote, austere base camps that support an operationally defined mission with a limited or no ability to draw from an energy grid and have historically relied on diesel-powered generators for the primary production of energy.[2] Generators are sized to meet a theoretical peak demand, but steady state loads are far below this peak, resulting in under-loaded generators.[3] Under-loaded diesel generators decrease efficiency and increase the need for maintenance, affecting the lifespan of …


A Theoretical Model Of Underground Dipole Antennas For Communications In Internet Of Underground Things, Abdul Salam, Mehmet C. Vuran, Xin Dong, Christos Argyropoulos, Suat Irmak Feb 2019

A Theoretical Model Of Underground Dipole Antennas For Communications In Internet Of Underground Things, Abdul Salam, Mehmet C. Vuran, Xin Dong, Christos Argyropoulos, Suat Irmak

Faculty Publications

The realization of Internet of Underground Things (IOUT) relies on the establishment of reliable communication links, where the antenna becomes a major design component due to the significant impacts of soil. In this paper, a theoretical model is developed to capture the impacts of change of soil moisture on the return loss, resonant frequency, and bandwidth of a buried dipole antenna. Experiments are conducted in silty clay loam, sandy, and silt loam soil, to characterize the effects of soil, in an indoor testbed and field testbeds. It is shown that at subsurface burial depths (0.1-0.4m), change in soil moisture impacts …


Improving Regional And Teleseismic Detection For Single-Trace Waveforms Using A Deep Temporal Convolutional Neural Network Trained With An Array-Beam Catalog, Joshua T. Dickey, Brett J. Borghetti, William Junek Jan 2019

Improving Regional And Teleseismic Detection For Single-Trace Waveforms Using A Deep Temporal Convolutional Neural Network Trained With An Array-Beam Catalog, Joshua T. Dickey, Brett J. Borghetti, William Junek

Faculty Publications

The detection of seismic events at regional and teleseismic distances is critical to Nuclear Treaty Monitoring. Traditionally, detecting regional and teleseismic events has required the use of an expensive multi-instrument seismic array; however in this work, we present DeepPick, a novel seismic detection algorithm capable of array-like detection performance from a single-trace. We achieve this performance through three novel steps: First, a high-fidelity dataset is constructed by pairing array-beam catalog arrival-times with single-trace waveforms from the reference instrument of the array. Second, an idealized characteristic function is created, with exponential peaks aligned to the cataloged arrival times. Third, a deep …


A Triaxial Applicator For The Measurement Of The Electromagnetic Properties Of Materials, Saranraj Karuppuswami, Edward Rothwell, Premjeet Chahal, Michael J. Havrilla Jan 2019

A Triaxial Applicator For The Measurement Of The Electromagnetic Properties Of Materials, Saranraj Karuppuswami, Edward Rothwell, Premjeet Chahal, Michael J. Havrilla

Faculty Publications

The design, analysis, and fabrication of a prototype triaxial applicator is described. The applicator provides both reflected and transmitted signals that can be used to characterize the electromagnetic properties of materials in situ. A method for calibrating the probe is outlined and validated using simulated data. Fabrication of the probe is discussed, and measured data for typical absorbing materials and for the probe situated in air are presented. The simulations and measurements suggest that the probe should be useful for measuring the properties of common radar absorbing materials under usual in situ conditions.


Internet Of Things In Smart Agriculture: Enabling Technologies, Abdul Salam, Syed Shah Jan 2019

Internet Of Things In Smart Agriculture: Enabling Technologies, Abdul Salam, Syed Shah

Faculty Publications

In this paper, an IoT technology research and innovation roadmap for the field of precision agriculture (PA) is presented. Many recent practical trends and the challenges have been highlighted. Some important objectives for integrated technology research and education in precision agriculture are described. Effective IoT based communications and sensing approaches to mitigate challenges in the area of precision agriculture are presented.


A Sustainable Prototype For Renewable Energy: Optimized Prime-Power Generator Solar Array Replacement, Nathan Thomsen, Torrey J. Wagner, Andrew J. Hoisington, Steven J. Schuldt Jan 2019

A Sustainable Prototype For Renewable Energy: Optimized Prime-Power Generator Solar Array Replacement, Nathan Thomsen, Torrey J. Wagner, Andrew J. Hoisington, Steven J. Schuldt

Faculty Publications

Remote locations such as disaster relief camps, isolated arctic communities, and military forward operating bases are disconnected from traditional power grids forcing them to rely on diesel generators with a total installed capacity of 10,000 MW worldwide. The generators require a constant resupply of fuel, resulting in increased operating costs, negative environmental impacts, and challenging fuel logistics. To enhance remote site sustainability, planners can develop stand-alone photovoltaic-battery systems to replace existing prime power generators. This paper presents the development of a novel cost-performance model capable of optimizing solar array and Li-ion battery storage size by generating tradeoffs between minimizing initial …


Real-Time Path Planning In Constrained, Uncertain Environments, Randall Christensen, Robert C. Leishman Jan 2019

Real-Time Path Planning In Constrained, Uncertain Environments, Randall Christensen, Robert C. Leishman

Faculty Publications

A key enabler of autonomous vehicles is the ability to plan the path of the vehicle to accomplish mission objectives. To be robust to realistic environments, path planners must account for uncertainty in the trajectory of the vehicle as well as uncertainty in the location of obstacles. The uncertainty in the trajectory of the vehicle is a difficult quantity to estimate, and is influenced by coupling between the vehicle dynamics, guidance, navigation, and control system as well as any disturbances acting on the vehicle. Monte Carlo analysis is the conventional approach to determine vehicle dispersion, while accounting for the coupled …


M2 Factor Of A Vector Schell-Model Beam, Milo W. Hyde Iv, Mark F. Spencer Jan 2019

M2 Factor Of A Vector Schell-Model Beam, Milo W. Hyde Iv, Mark F. Spencer

Faculty Publications

Extending existing scalar Schell-model source work, we derive the M2 factor for a general electromagnetic or vector Schell-model source to assess beam quality. In particular, we compute the M2 factors for two vector Schell-model sources found in the literature. We then describe how to synthesize vector Schell-model beams in terms of specified, desired M2 and present Monte Carlo simulation results to validate our analysis.


Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic (E > 10 Mev) Particle Events, J. F. Round, Robert D. Loper, Omar A. Nava, Stephen W. Kahler Jan 2019

Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic (E > 10 Mev) Particle Events, J. F. Round, Robert D. Loper, Omar A. Nava, Stephen W. Kahler

Faculty Publications

The elemental composition of heavy ions (with atomic number Z > 2) (hi-Z) in large gradual E > 10 MeV nuc-1 SEP events has been extensively studied in the 2-15 MeV nuc-1 range to determine the acceleration processes and transport properties of SEPs. These studies invariably are based on abundances relative to those of a single element such as C or O and often neglect H and He, the elements of primary interest for space weather. The total radiation of an SEP event is determined not only by the H and He properties but also by those of hi-Z ions …