Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

FIU Electronic Theses and Dissertations

Wireless power transfer

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Design Optimization Of Inductive Power Transfer Systems For Contactless Electric Vehicle Charging Applications, Masood Moghaddami Oct 2018

Design Optimization Of Inductive Power Transfer Systems For Contactless Electric Vehicle Charging Applications, Masood Moghaddami

FIU Electronic Theses and Dissertations

Contactless Electric Vehicle (EV) charging based on magnetic resonant induction is an emerging technology that can revolutionize the future of the EV industry and transportation systems by enabling an automated and convenient charging process. However, in order to make this technology an acceptable alternative for conventional plug-in charging systems it needs to be optimized for different design measures. Specifically, the efficiency of an inductive EV charging system is of a great importance and should be comparable to the efficiency of conventional plug-in EV chargers.

The aim of this study is to develop solutions that contribute to the design enhancement of …


Novel Strongly Coupled Magnetic Resonant Systems, Daerhan Liu Mar 2018

Novel Strongly Coupled Magnetic Resonant Systems, Daerhan Liu

FIU Electronic Theses and Dissertations

Wireless power transfer (WPT) technologies have become important for our everyday life. The most commonly used near-field WPT method is inductive coupling, which suffers from low efficiency and small range. The Strongly Coupled Magnetic Resonance (SCMR) method was developed recently, and it can be used to wirelessly transfer power with higher efficiency over a longer distance than the inductive coupling method.

This dissertation develops new SCMR systems that have better performance compared to standard SCMR systems. Specifically, two new 3-D SCMR systems are designed to improve the angular misalignment sensitivity of WPT systems. Their power transfer efficiency for different angular …


Optimal And Miniaturized Strongly Coupled Magnetic Resonant Systems, Hao Hu Nov 2016

Optimal And Miniaturized Strongly Coupled Magnetic Resonant Systems, Hao Hu

FIU Electronic Theses and Dissertations

Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and …