Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Model-Based Control Of Hybrid Electric Powertrains Integrated With Low Temperature Combustion Engines, Ali Soloukmofrad Jan 2017

Model-Based Control Of Hybrid Electric Powertrains Integrated With Low Temperature Combustion Engines, Ali Soloukmofrad

Dissertations, Master's Theses and Master's Reports

Powertrain electrification including hybridizing advanced combustion engines is a viable cost-effective solution to improve fuel economy of vehicles. This will provide opportunity for narrow-range high-efficiency combustion regimes to be able to operate and consequently improve vehicle’s fuel conversion efficiency, compared to conventional hybrid electric vehicles (HEV)s. Low temperature combustion (LTC) engines offer the highest peak brake thermal efficiency reported in literature, but these engines have narrow operating range. In addition, LTC engines have ultra-low soot and nitrogen oxides (NOx) emissions, compared to conventional compression ignition and spark ignition (SI) engines. This dissertation concentrates on integrating the LTC engines (i) in …


Easily Verifiable Controller Design With Application To Automotive Powertrains, Mohammad Reza Amini Jan 2017

Easily Verifiable Controller Design With Application To Automotive Powertrains, Mohammad Reza Amini

Dissertations, Master's Theses and Master's Reports

Bridging the gap between designed and implemented model-based controllers is a major challenge in the design cycle of industrial controllers. This gap is mainly created due to (i) digital implementation of controller software that introduces sampling and quantization imprecisions via analog-to-digital conversion (ADC), and (ii) uncertainties in the modeled plant’s dynamics, which directly propagate through the controller structure. The failure to identify and handle these implementation and model uncertainties results in undesirable controller performance and costly iterative loops for completing the controller verification and validation (V&V) process.

This PhD dissertation develops a novel theoretical framework to design controllers that are …


Model-Based Control Of An Rcci Engine, Akshat Abhay Raut Jan 2017

Model-Based Control Of An Rcci Engine, Akshat Abhay Raut

Dissertations, Master's Theses and Master's Reports

Reactivity controlled compression ignition (RCCI) is a combustion strategy that offers high fuel conversion efficiency and near zero emissions of NOx and soot which can help in improving fuel economy in mobile and stationary internal combustion engine (ICE) applications and at the same time lower engine-out emissions. One of the main challenges associated with RCCI combustion is the difficulty in simultaneously controlling combustion phasing, engine load, and cyclic variability during transient engine operations.

This thesis focuses on developing model based controllers for cycle-to-cycle combustion phasing and load control during transient operations. A control oriented model (COM) is developed by using …


Electromagnetic Signal Feedback Control For Proximity Detection Systems, Adam K. Smith Jan 2017

Electromagnetic Signal Feedback Control For Proximity Detection Systems, Adam K. Smith

Dissertations, Master's Theses and Master's Reports

Coal is the most abundant fossil fuel in the United States and remains an essential source of energy. While more than half of coal production comes from surface mining, nearly twice as many workers are employed by underground operations.

One of the key pieces of equipment used in underground coal mining is the continuous mining machine. These large and powerful machines are operated in confined spaces by remote control. Since 1984, 40 mine workers in the U. S. have been killed when struck or pinned by a continuous mining machine. It is estimated that a majority of these accidents could …


Detection Of Fatigue Damage In Shear Connections Using Acoustic Wave Propagation, Zichao Wang Jan 2017

Detection Of Fatigue Damage In Shear Connections Using Acoustic Wave Propagation, Zichao Wang

Dissertations, Master's Theses and Master's Reports

Fatigue damage is an important concern in structural steel connections where frequent load reversals are expected. Detection of fatigue damage is typically done with infrequent visual inspections that are subjective and limited to surface features. A permanent embedded structural health monitoring (SHM) system could be helpful in detecting damage as it occurs. Current methods for detecting fatigue damage include inference of fatigue life expended through cycle counting from long-term strain measurement campaigns, and through short-term impedance measurements. The first approach has the advantage that it is relatively simple from an algorithmic point of view, but it is an indirect measure …


Design Automation For Carbon Nanotube Circuits Considering Performance And Security Optimization, Lin Liu Jan 2017

Design Automation For Carbon Nanotube Circuits Considering Performance And Security Optimization, Lin Liu

Dissertations, Master's Theses and Master's Reports

As prevailing copper interconnect technology advances to its fundamental physical limit, interconnect delay due to ever-increasing wire resistivity has greatly limited the circuit miniaturization. Carbon nanotube (CNT) interconnects have emerged as promising replacement materials for copper interconnects due to their superior conductivity. Buffer insertion for CNT interconnects is capable of improving circuit timing of signal nets with limited buffer deployment. However, due to the imperfection of fabricating long straight CNT, there exist significant unidimensional-spatially correlated variations on the critical CNT geometric parameters such as the diameter and density, which will affect the circuit performance.

This dissertation develops a novel timing …


Second-Life Battery Electrochemical Impedance Spectroscopy Modeling And Application To A Residential System, Busra Ovali Jan 2017

Second-Life Battery Electrochemical Impedance Spectroscopy Modeling And Application To A Residential System, Busra Ovali

Dissertations, Master's Theses and Master's Reports

This study presents the modeling of a used hybrid electric vehicle battery (also called second life battery), and its design and simulation for a standalone residential photovoltaic system. For this purpose, the battery was tested through capacity and electrochemical impedance spectroscopy tests (EIS). These tests were done with variable temperatures (0ºC, 15ºC and 30ºC), and results were used to fit an equivalent impedance circuit. This model was used to incorporate a second life battery to a PV system, which was simulated by using daily irradiance and load data for Tucson (AZ) under most various month (May).


Heterogeneous Multi-Sensor Fusion For 2d And 3d Pose Estimation, Hanieh Deilamsalehy Jan 2017

Heterogeneous Multi-Sensor Fusion For 2d And 3d Pose Estimation, Hanieh Deilamsalehy

Dissertations, Master's Theses and Master's Reports

Sensor fusion is a process in which data from different sensors is combined to acquire an output that cannot be obtained from individual sensors. This dissertation first considers a 2D image level real world problem from rail industry and proposes a novel solution using sensor fusion, then proceeds further to the more complicated 3D problem of multi sensor fusion for UAV pose estimation.

One of the most important safety-related tasks in the rail industry is an early detection of defective rolling stock components. Railway wheels and wheel bearings are two components prone to damage due to their interactions with the …


Performance Simulation And Optimization Of A Simultaneous Transmit And Receive Phased Antenna Array Using Adaptive Beamforming And Genetic Algorithm Techniques, Ian Thomas Cummings Jan 2017

Performance Simulation And Optimization Of A Simultaneous Transmit And Receive Phased Antenna Array Using Adaptive Beamforming And Genetic Algorithm Techniques, Ian Thomas Cummings

Dissertations, Master's Theses and Master's Reports

The development of simultaneous transmit and receive capabilities is on the cutting-edge of research in phased array technology [1, 2, 3]. The large disparity in power between the transmitted and received signals in antenna systems has traditionally prevented operation in a simultaneous mode. However, simultaneous transmit and receive offers great opportunities for increased capabilities and performance in communications, radar, and electronic warfare applications [3]. This technology will be made feasible by realizing a high level of isolation between the transmitted and received signals through a variety of techniques. This work explores the feasibility of choosing non-standard array partitions that--when paired …


Consensus Based Distributed Control In Micro-Grid Clusters, Syed Ahmed Fuad Jan 2017

Consensus Based Distributed Control In Micro-Grid Clusters, Syed Ahmed Fuad

Dissertations, Master's Theses and Master's Reports

With the increasing trend of utilizing renewable energy generators such as photovoltaic (PV) cells and wind turbines, power systems are transforming from a centralized power grid structure to a cluster of smart micro-grids with more autonomous power sharing capabilities. Even though the decentralized control of power systems is a reliable and cost effective solution, due to the inherent heterogeneous nature of micro-grids, optimal and efficient power sharing among distributed generators (DG’s) is a major issue which calls for advanced control techniques for voltage stabilization of the entire micro-grid cluster. The proposed consensus based algorithm in this thesis is a solution …


A Wireless, Passive Sensor For Measuring Temperature At Orthopedic Implant Sites For Early Diagnosis Of Infections, Salil Sidharthan Karipott Jan 2017

A Wireless, Passive Sensor For Measuring Temperature At Orthopedic Implant Sites For Early Diagnosis Of Infections, Salil Sidharthan Karipott

Dissertations, Master's Theses and Master's Reports

Sensorized implants with embedded wireless, passive temperature sensors were developed for early detection of implant-associated infections. The operation principle of the sensor is based on the hypothesis that infections can lead to an increase in local temperature prior to the rise of body temperature. The sensor was an inductive capacitive (LC) circuit that has been used for monitoring of different parameters wirelessly, often in difficult to access environments. The sensor was fabricated on to an interference screw, which is used for tendon and ligament reconstruction surgeries. In this project, a sensorized interference screw was designed and fabricated by accommodating an …


High Performance Multiview Video Coding, Caoyang Jiang Jan 2017

High Performance Multiview Video Coding, Caoyang Jiang

Dissertations, Master's Theses and Master's Reports

Following the standardization of the latest video coding standard High Efficiency Video Coding in 2013, in 2014, multiview extension of HEVC (MV-HEVC) was published and brought significantly better compression performance of around 50% for multiview and 3D videos compared to multiple independent single-view HEVC coding. However, the extremely high computational complexity of MV-HEVC demands significant optimization of the encoder. To tackle this problem, this work investigates the possibilities of using modern parallel computing platforms and tools such as single-instruction-multiple-data (SIMD) instructions, multi-core CPU, massively parallel GPU, and computer cluster to significantly enhance the MVC encoder performance. The aforementioned computing tools …


Electro-Optic Contact Poling Of Polymer Waveguide Devices And Thin Films, Michael Briseno Jan 2017

Electro-Optic Contact Poling Of Polymer Waveguide Devices And Thin Films, Michael Briseno

Dissertations, Master's Theses and Master's Reports

Optical communication is a high speed, large bandwidth, low cost, and power efficient method of transferring data over short-haul and long-haul channels. Optical communication requires devices (optical modulators) that utilize the originating electrical signal information to modulate a corresponding optical signal. State of the art optical modulators can be used for communicating signals at modulation frequencies up to 100 GHz and faster. Polymer modulators are used over lithium niobate due to the large potential electro-optic coefficient, which has been shown to be as high as 226 pm/V in thin films.

Organic electro-optic polymers used in thin film modulators contain nonlinear …


Position Control Of An Unmanned Aerial Vehicle From A Mobile Ground Vehicle, Astha Tiwari Jan 2017

Position Control Of An Unmanned Aerial Vehicle From A Mobile Ground Vehicle, Astha Tiwari

Dissertations, Master's Theses and Master's Reports

Quadcopters have been developed with controls providing good maneuverability, simple mechanics, and the ability to hover, take-off and land vertically with precision. Due to their small size, they can get close to targets of interest and furthermore stay undetected at lower heights. The main drawbacks of a quadcopter are its high-power consumption and payload restriction, due to which, the number of onboard sensors is constrained. To overcome this limitation, vision-based localization techniques and remote control for the quadcopter are essential areas of current research. The core objective of this research is to develop a closed loop feedback system between an …


Polymer Waveguide Manufacturing And Printed Circuit Board Integration, Brandon Swatowski Jan 2017

Polymer Waveguide Manufacturing And Printed Circuit Board Integration, Brandon Swatowski

Dissertations, Master's Theses and Master's Reports

In this age of ever increasing data rates in communication systems, optics are becoming more commonplace for long length (>10m) signal transmission in High Performance Computing (HPC) systems due to their bandwidth capabilities which are higher than their electrical counterparts. In these optical based communication systems, Vertical Cavity Surface Emitting Lasers (VCSELs) are the most commonly used communications lasing medium for multimode fiber applications. These lasers are active in the 850 nm region, with speeds commonly at 10 Gbps/channel. VCSEL vendors are now commercializing lasers at 25 Gbps/channel as well, with research groups actively pursuing rates beyond 40 Gbps/channel, …


Minimum Time Control Of Paralleled Boost Converters, Shishir Patel Jan 2017

Minimum Time Control Of Paralleled Boost Converters, Shishir Patel

Dissertations, Master's Theses and Master's Reports

Demand for electrification is booming in both, traditional and upcoming generations of technological advancements. One of the constituent blocks of these electrified systems is Power conversion. Power conversion systems are often constructed by paralleling multiple power converter blocks for high performance and reliability of overall system. An advanced control technique is developed with an aim to optimize system states of heterogeneous power converters within minimum time while maintaining feasible stress level on individual power converter blocks. Practical implementation of real-time controller and performance improvement strategies are addressed. Experimental results validating high performance control scheme, and sensitivity analysis of system states …


A Testbed Design For Monitoring The Long-Term Spatial-Temporal Dynamics Of Underwater Acoustic Channels, Krishna Chaitanya Poduru Jan 2017

A Testbed Design For Monitoring The Long-Term Spatial-Temporal Dynamics Of Underwater Acoustic Channels, Krishna Chaitanya Poduru

Dissertations, Master's Theses and Master's Reports

The underwater acoustic network testbed helps to validate the theoretical results and bridge the gap between experimental results. Characterizing and modeling the spatial-temporal dynamics of underwater acoustic channels is essential to developing efficient and effective physical-layer communication algorithms and network protocols. This work dedicates to designing a testbed system to measure the spatial-temporal dynamics of underwater acoustic channels. The collected measurements will shed insights into the spatial-temporal correlation of underwater acoustic channels and will be used to evaluate the theoretical algorithms that are designed to model the spatial-temporal dynamics and to exploit the spatial-temporal dynamics for more efficient and effective …


Investigation Of The Use Of 3-D Printer Platform As Building Block For Rapid Design Of Research And Manufacturing Tool, Handy Chandra Jan 2017

Investigation Of The Use Of 3-D Printer Platform As Building Block For Rapid Design Of Research And Manufacturing Tool, Handy Chandra

Dissertations, Master's Theses and Master's Reports

This thesis attempts to show how an open source 3-D printer platform, the self replicating rapid prototype (RepRap), could be used to accelerate the development of research and manufacturing tools. Two projects are shown as examples, both utilizing components of the 3-D printer platform.

The first project is to develop an instrument capable of performing automated large-area four-point probe measurements. A modified RepRap 3-D Printer with a four-point probe in place of the 3-D printer head is utilized as a precision positioning platform. The printer together with custom designed measurement circuit and software performs automated measurement on multiple points on …


Implantable Wireless Sensor Networks: Application To Measuring Temperature For In Vivo Detection Of Infections, Praharsh Madappaly Veetil Jan 2017

Implantable Wireless Sensor Networks: Application To Measuring Temperature For In Vivo Detection Of Infections, Praharsh Madappaly Veetil

Dissertations, Master's Theses and Master's Reports

It is has been proven that infection in the body cause a local temperature increase due to localized inflammation. Therefore, a method to provide early diagnostic or long-term tracking of this infection will provide great benefits to patients with diabetic foot ulcers or sickle cell disease, and those receiving hemodialysis where they suffer from a weakened immune system. The goal of this project is to develop an implantable wireless temperature sensor based on a wireless sensor network system for monitoring infections in situ. The analog signals from the thermistors are digitized and wirelessly transmitted to a computer with an ez430-rf2500 …


An Optimal Energy Management Strategy For Hybrid Electric Vehicles, Amir Rezaei Jan 2017

An Optimal Energy Management Strategy For Hybrid Electric Vehicles, Amir Rezaei

Dissertations, Master's Theses and Master's Reports

Hybrid Electric Vehicles (HEVs) are used to overcome the short-range and long charging time problems of purely electric vehicles. HEVs have at least two power sources. Therefore, the Energy Management (EM) strategy for dividing the driver requested power between the available power sources plays an important role in achieving good HEV performance.

This work, proposes a novel real-time EM strategy for HEVs which is named ECMS-CESO. ECMS-CESO is based on the Equivalent Consumption Minimization Strategy (ECMS) and is designed to Catch Energy Saving Opportunities (CESO) while operating the vehicle. ECMS-CESO is an instantaneous optimal controller, i. e., it does not …


Feature And Decision Level Fusion Using Multiple Kernel Learning And Fuzzy Integrals, Anthony Pinar Jan 2017

Feature And Decision Level Fusion Using Multiple Kernel Learning And Fuzzy Integrals, Anthony Pinar

Dissertations, Master's Theses and Master's Reports

The work collected in this dissertation addresses the problem of data fusion. In other words, this is the problem of making decisions (also known as the problem of classification in the machine learning and statistics communities) when data from multiple sources are available, or when decisions/confidence levels from a panel of decision-makers are accessible. This problem has become increasingly important in recent years, especially with the ever-increasing popularity of autonomous systems outfitted with suites of sensors and the dawn of the ``age of big data.'' While data fusion is a very broad topic, the work in this dissertation considers …


Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro Jan 2017

Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

Active ankle prostheses controllers are demonstrating gaining smart features to improve the safety and comfort offor users. The perception of user intention to modulate the ankle dynamics is a well-known example of such feature. But not much work focused on the perception of the environment, nor how the environment should be included in the mechanical design and control of the prosthesisprostheses. The proposed work aims to improve the feasibility of integrate the environment perception integration intoto the prostheses controllersler, and to define the desired ankle dynamics, as mechanical impedance, duringof the human walk on different environmental settings. As a preliminary …


A Host Board Design For An Experiment System Of Underwater Wireless Sensor Networks, He Huang Jan 2017

A Host Board Design For An Experiment System Of Underwater Wireless Sensor Networks, He Huang

Dissertations, Master's Theses and Master's Reports

Evaluation of theoretical innovation in field experiments plays an important role for research in Underwater Wireless Sensor Networks (UWSNs). During the experiments, the problems of power consumption, costs, and assembly of underwater nodes concern researchers all the time. This project develops a host board for an UWSNs field experiment system. This host board solves the above problems by deploying power management module, utilizing cheap and low power consumption chips (Raspberry Pi and MSP430), and rationalizing layout.

The main functions of the host board include battery monitoring, on-board DC converters, remotely power supply control, data ports bridge, and pluggable module for …


Using Lower Extremity Muscle Activations To Estimate Human Ankle Impedance In The External-Internal Direction, Lauren N. Knop Jan 2017

Using Lower Extremity Muscle Activations To Estimate Human Ankle Impedance In The External-Internal Direction, Lauren N. Knop

Dissertations, Master's Theses and Master's Reports

For millions of people, mobility has been afflicted by lower limb amputation. Lower extremity prostheses have been used to improve the mobility of an amputee; however, they often require additional compensation from other joints and do not allow for natural maneuverability. To improve upon the functionality of ankle-foot prostheses, it is necessary to understand the role of different muscle activations in the modulation of mechanical impedance of a healthy human ankle. This report presents the results of using artificial neural networks (ANN) to determine the functional relationship between lower extremity electromyography (EMG) signals and ankle impedance in the transverse plane. …


Performance Comparison Of Binarized Neural Network With Convolutional Neural Network, Lopamudra Baruah Jan 2017

Performance Comparison Of Binarized Neural Network With Convolutional Neural Network, Lopamudra Baruah

Dissertations, Master's Theses and Master's Reports

Deep learning is a trending topic widely studied by researchers due to increase in the abundance of data and getting meaningful results with them. Convolutional Neural Networks (CNN) is one of the most popular architectures used in deep learning. Binarized Neural Network (BNN) is also a neural network which consists of binary weights and activations. Neural Networks has large number of parameters and overfitting is a common problem to these networks. To overcome the overfitting problem, dropout is a solution. Randomly dropping some neurons along with its connections helps to prevent co-adaptations which finally help in reducing overfitting. Many researchers …