Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

University of South Carolina

Modeling

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Model-Driven Analysis Of Ecg Using Reinforcement Learning, Christian O'Reilly, Sai Durga Rithvik Oruganti, Deepa Tilwani, Jessica Bradshaw Jun 2023

Model-Driven Analysis Of Ecg Using Reinforcement Learning, Christian O'Reilly, Sai Durga Rithvik Oruganti, Deepa Tilwani, Jessica Bradshaw

Publications

Modeling is essential to better understand the generative mechanisms responsible for experimental observations gathered from complex systems. In this work, we are using such an approach to analyze the electrocardiogram (ECG). We present a systematic framework to decompose ECG signals into sums of overlapping lognormal components. We use reinforcement learning to train a deep neural network to estimate the modeling parameters from an ECG recorded in babies from 1 to 24 months of age. We demonstrate this model-driven approach by showing how the extracted parameters vary with age. From the 751,510 PQRST complexes modeled, 82.7% provided a signal-to-noise ratio that …


Closed Form Implicitly Integrated Models For Computationally Efficient Simulation Of Power Electronics, Andrew Wunderlich Oct 2022

Closed Form Implicitly Integrated Models For Computationally Efficient Simulation Of Power Electronics, Andrew Wunderlich

Theses and Dissertations

This work describes novel closed-form, implicitly integrated (CF-implicit) models of switched-mode power converters which feature implicit integration but require no iterative numerical solving algorithm for evaluation because they are explicitly solved prior to model execution. The derived models capture the large-signal dynamic behavior of the power converters, so their use and accuracy are not limited to any one set of operating conditions. These models can be implemented in any computational environment, including directly on an existing embedded controller as a digital twin. Since no iterative solver is required, the models are highly computationally efficient and have a very predictable worst-case …


Modeling And Loss Analysis Of Wide Bandgap Power Semiconductor Devices, Kang Peng Jun 2016

Modeling And Loss Analysis Of Wide Bandgap Power Semiconductor Devices, Kang Peng

Theses and Dissertations

In recent times, the development of high power density and high efficiency power converters has become critical in power electronics applications like electric vehicles, aircrafts, electric ships and so on. High-switching-frequency and high-temperature operation are required to achieve this target. However, these requirements are exceeding the theoretical material-related limits of silicon (Si) based devices. The emerging wide bandgap power semiconductor technology is a promising solution to meet these requirements. Silicon Carbide (SiC) and Gallium Nitride (GaN) are the most promising among all wide bandgap semiconductor materials. SiC and GaN have almost a three times larger bandgap (about 3eV), compared with …


Ray-Based Statistical Propagation Modeling For Indoor Corridor Scenarios At 15 Ghz, Qi Wang, Bo Ai, David W. Matolak, Ruisi He, Xin Zhou Mar 2016

Ray-Based Statistical Propagation Modeling For Indoor Corridor Scenarios At 15 Ghz, Qi Wang, Bo Ai, David W. Matolak, Ruisi He, Xin Zhou

Faculty Publications

According to the demands for fifth-generation (5G) communication systems, high frequency bands (above 6 GHz) need to be adopted to provide additional spectrum. This paper investigates the characteristics of indoor corridor channels at 15 GHz. Channel measurements with a vector network analyzer in two corridors were conducted. Based on a ray-optical approach, a deterministic channel model covering both antenna and propagation characteristic is presented. The channel model is evaluated by comparing simulated results of received power and root mean square delay spread with the corresponding measurements. By removing the impact of directional antennas from the transmitter and receiver, a path …


Modeling Of Sic Power Semiconductor Devices For Switching Converter Applications, Ruiyun Fu Jan 2013

Modeling Of Sic Power Semiconductor Devices For Switching Converter Applications, Ruiyun Fu

Theses and Dissertations

Thanks to recent progress in SiC technology, SiC JFETs, MOSFETs and Schottky diodes are now commercially available from several manufactories such as Cree, GeneSiC and Infineon. SiC devices hold the promise of faster switching speed compared to Si devices, which can lead to superior converter performance, because the converter can operate at higher switching frequencies with acceptable switching losses, so that passive filter size is reduced. However, the ultimate achievable switching speed is determined not only by internal semiconductor device physics, but also by circuit parasitic elements. Therefore, in order to accurately predict switching losses and actual switching waveforms, including …