Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

University of Kentucky

Theses/Dissertations

Robotics

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Parallel Real Time Rrt*: An Rrt* Based Path Planning Process, David Yackzan Jan 2023

Parallel Real Time Rrt*: An Rrt* Based Path Planning Process, David Yackzan

Theses and Dissertations--Mechanical Engineering

This thesis presents a new parallelized real-time path planning process. This process is an extension of the Real-Time Rapidly Exploring Random Trees* (RT-RRT*) algorithm developed by Naderi et al in 2015 [1]. The RT-RRT* algorithm was demonstrated on a simulated two-dimensional dynamic environment while finding paths to a varying target state. We demonstrate that the original algorithm is incapable of running at a sufficient rate for control of a 7-degree-of-freedom (7-DoF) robotic arm while maintaining a path planning tree in 7 dimensions. This limitation is due to the complexity of maintaining a tree in a high-dimensional space and the network …


A Comparative Analysis Of Reinforcement Learning Applied To Task-Space Reaching With A Robotic Manipulator With And Without Gravity Compensation, Jonathan Fugal Jan 2020

A Comparative Analysis Of Reinforcement Learning Applied To Task-Space Reaching With A Robotic Manipulator With And Without Gravity Compensation, Jonathan Fugal

Theses and Dissertations--Electrical and Computer Engineering

Advances in computing power in recent years have facilitated developments in autonomous robotic systems. These robotic systems can be used in prosthetic limbs, wearhouse packaging and sorting, assembly line production, as well as many other applications. Designing these autonomous systems typically requires robotic system and world models (for classical control based strategies) or time consuming and computationally expensive training (for learning based strategies). Often these requirements are difficult to fulfill. There are ways to combine classical control and learning based strategies that can mitigate both requirements. One of these ways is to use a gravity compensated torque control with reinforcement …