Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

University of Arkansas, Fayetteville

Theses/Dissertations

Solar cells

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Top-Down Aluminum Induced Crystallization For Photovoltaics, Seth Daniel Shumate May 2015

Top-Down Aluminum Induced Crystallization For Photovoltaics, Seth Daniel Shumate

Graduate Theses and Dissertations

Passivating silicon solar cell surfaces is critical to fabricating very high efficiency and low cost photovoltaic devices. The sun-facing surface of the solar cell, known as the emitter, is particularly important when designing a solar cell. This work focused first on an alternative method of forming the emitter of silicon solar cells, and secondly on a method for improving the surface passivation of both these non-traditional and standard n-type solar cells.

Top-down aluminum induced crystallization (TAIC) was used for forming a polycrystalline silicon layer from amorphous silicon using aluminum to catalyze the crystallization at much lower temperatures than otherwise possible. …


Metal Assisted Nanowire Growth For Silicon Nanowire/Amorphous Silicon Composite Solar Cell, Asmaa Ali Sadoon Dec 2014

Metal Assisted Nanowire Growth For Silicon Nanowire/Amorphous Silicon Composite Solar Cell, Asmaa Ali Sadoon

Graduate Theses and Dissertations

Solar cells are photovoltaic devices that convert the energy of light to electricity by the photovoltaic effect. Crystalline silicon-based solar cells are the most dominant solar cells in the market today due to the high efficiency and relatively low cost. However, the cost of such solar cell is still high due to the large amount of material that is consumed in fabricating such a device. Polycrystalline/amorphous thin films and nanomaterial technologies have emerged to reduce the high cost of c-Si based solar cells and increase the efficiency. In this research, we combined these two technologies to propose and fabricate silicon …


Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford May 2013

Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford

Graduate Theses and Dissertations

In this work, computational investigation of plasmonic nanostructures was conducted using the commercial finite element electromagnetics solver Ansys® HFSS. Arrays of silver toroid nanoparticles located on the surface of an amorphous silicon thin-film absorbing layer were studied for particle sizes ranging from 20 nm to 200 nm in outer diameter. Parametric optimization by calculating an approximation of the photocurrent enhancement due to the nanoparticles was performed to determine optimal surface coverage of the nanoparticles. A comparison was made between these optimized nanotoroid arrays and optimized nanosphere arrays based on spectral absorption enhancement and potential photocurrent enhancement in an amorphous silicon …


Synthesis And Characterization Of Iron Pyrite Nanocrystals For Photovoltaic Devices, Scott Curtis Mangham May 2013

Synthesis And Characterization Of Iron Pyrite Nanocrystals For Photovoltaic Devices, Scott Curtis Mangham

Graduate Theses and Dissertations

Iron pyrite nanocrystals have been synthesized using a hot-injection method with a variety of amines and characterized with properties necessary for photovoltaic devices. The iron pyrite nanocrystals were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, optical absorption, micro-Raman, and micro-Photoluminescence. The optical absorbance spectra showed the large absorption in the visible and near infrared spectral range for the nanocrystals as well as to show the band gap. The face-centered cubic crystal structure of the iron pyrite nanocrystals was shown by matching the measured X-ray diffraction pattern to a face-centered cubic iron pyrite reference pattern. Using Bragg's law …


Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji Dec 2012

Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji

Graduate Theses and Dissertations

Thin film solar cells are promising to realize cheap solar energy. Compared to conventional wafer cells, they can reduce the use of semiconductor material by 90%. The efficiency of thin film solar cells, however, is limited due to insufficient light absorption. Sufficient light absorption at the bandgap of semiconductor requires a light path more than 10x the thickness of the semiconductor. Advanced designs for light trapping are necessary for solar cells to absorb sufficient light within a limited volume of semiconductor. The goal is to convert the incident light into a trapped mode in the semiconductor layer.

In this dissertation, …


Photodetectors And Photovoltaic Devices Based On Semiconductor Nanomaterials, Jiang Wu Dec 2011

Photodetectors And Photovoltaic Devices Based On Semiconductor Nanomaterials, Jiang Wu

Graduate Theses and Dissertations

Photodetectors based various nanostructures and plasmon enhanced solar cells are investigated in this dissertation. The motivation of the dissertation rise is driven by urgent need of both high efficiency photodetectors and solar cells.

First, quantum dot infrared photodetectors have been intensely investigated due to their promise in high performance photodetectors. However, the strain-driven growth of quantum dots has hindered the progress of quantum dot photodetectors. The presence of strain in the device presents complexity in designing as well as defects. Therefore, in this project, new designs of quantum dot photodetector structures are presented to improve the control over detection wavelength. …