Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Selected Works

Nian X. Sun

2013

Microwave properties

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Magnetic And Microwave Properties Of Cofe/Ptmn/Cofe Multilayer Films, C. Pettiford, A. Zeltser, S. Yoon, V. Harris, C. Vittoria, N. Sun Aug 2013

Magnetic And Microwave Properties Of Cofe/Ptmn/Cofe Multilayer Films, C. Pettiford, A. Zeltser, S. Yoon, V. Harris, C. Vittoria, N. Sun

Nian X. Sun

CoFe/PtMn/CoFe films were deposited on seed layers of Ru or NiFeCr with CoFe film compositions being either Co-10 at. %Fe or Co-16 at. %Fe. Eight periods of the CoFe/PtMn/CoFe trilayers were also prepared. The magnetic properties and ferromagnetic resonance (FMR) of these films were characterized with vibrating-sample magnetometer, and field-sweep FMR system at X band (∽9.5 GHz). The Ru-seeded CoFe/PtMn/CoFe sandwich films show excellent magnetic softness with a low hard axis coercivity of 2-4 Oe, an easy axis Mr/Ms of >98%, and a significantly enhanced in-plane anisotropy of 57-123 Oe when CoFe layer thickness is above 200 …


Microwave, Magnetic, And Structural Properties Of Nanocrystalline Exchange-Coupled Ni₁₁Co₁₁Fe₆₆Zr₇B₄Cu₁ Films For High Frequency Applications, S. D. Yoon, A. K. Baraskar, A. Geiler, A. Yang, C. Pettiford, N. X. Sun, R. Goswami, M. A. Willard, C. Vittoria, V. G. Harris Aug 2013

Microwave, Magnetic, And Structural Properties Of Nanocrystalline Exchange-Coupled Ni₁₁Co₁₁Fe₆₆Zr₇B₄Cu₁ Films For High Frequency Applications, S. D. Yoon, A. K. Baraskar, A. Geiler, A. Yang, C. Pettiford, N. X. Sun, R. Goswami, M. A. Willard, C. Vittoria, V. G. Harris

Nian X. Sun

Nanocrystalline structured films of the alloy Ni₁₁Co₁₁Fe₆₆Zr₇B₄Cu₁ were deposited by pulsed laser ablation deposition onto fused quartz substrates. A substrate temperature of 300°C was found to produce films consisting of body-centered-cubic (bcc) metallic grains suspended in an amorphous matrix. The bcc grain size ranged from 5 - 8 nm for substrate temperatures up to 300°C. Measured values of coercivity were consistently below 4 Oe for films having a saturation magnetization, as 4π Ms, of ∽16 kG with in- plane uniaxial anisotropy fields of 25 to 30 Oe. The ferromagnetic resonance peak- to- peak derivative linewidth was measured to be 34 …