Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Selected Works

Nian X. Sun

2013

Magnetism

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Room Temperature Magnetism In Semiconducting Films Of Zno Doped With Ferric Ions, S. D. Yoon, Y. J. Chen, D. Heiman, A. Yang, N. Sun, C. Vittoria, V. G. Harris Aug 2013

Room Temperature Magnetism In Semiconducting Films Of Zno Doped With Ferric Ions, S. D. Yoon, Y. J. Chen, D. Heiman, A. Yang, N. Sun, C. Vittoria, V. G. Harris

Nian X. Sun

Films consisting of Zn₁₋ₓFeₓO were prepared by alternating-target laser ablation deposition. The Fe doping levels ranged from x=0.016 to 0.125 at. %. X-ray diffraction and energy dispersive x-ray spectroscopy measurements showed only (002n) reflections of the ZnO host and confirmation of the Fe concentration, respectively. For films grown on (001) Al₂O₃ at 300 K, room temperature average saturation magnetization, < 4πMs >, measured from superconducting quantum interference device (SQUID) hysteresis loops for x=0.125 ± 0.025 was 172 G. Although SQUID measurements were sensitive to the average value of the saturation magnetization, ferrimagnetic resonance measurements appeared to be sensitive only to the saturation …


Structure And Magnetism Of Nanocrystalline Exchange-Coupled (Ni₀.₆₇Co₀.₂₅Fe₀.₀₈)₈₉₋ₓzr₇B₄Cuₓ (X=0,1) Films, S. Joshi, S. D. Yoon, A. Yang, N. X. Sun, C. Vittoria, V. G. Harris, R. Goswami, M. Willard, N. Shi Aug 2013

Structure And Magnetism Of Nanocrystalline Exchange-Coupled (Ni₀.₆₇Co₀.₂₅Fe₀.₀₈)₈₉₋ₓzr₇B₄Cuₓ (X=0,1) Films, S. Joshi, S. D. Yoon, A. Yang, N. X. Sun, C. Vittoria, V. G. Harris, R. Goswami, M. Willard, N. Shi

Nian X. Sun

Structural and magnetic characterizations of nanocrystalline films of (Ni₀.₆₇Co₀.₂₅Fe₀.₀₈)₈₉₋ₓZr₇B₄Cuₓ (x=0,1) alloys are reported. The films were grown on quartz substrates using pulsed laser deposition from homogeneous targets of the above compositions at substrate temperatures ranging from ambient to 600°C. Structural properties were measured by x-ray diffraction, atomic force microscopy, and transmission electron microscopy, whereas the magnetic properties were measured by vibrating sample magnetometry and ferromagnetic resonance. The resulting films exist as a two phase alloy with face-centered-cubic metallic grains suspended in an amorphous matrix. For both the x=1 and x=0 alloys, the softest magnetic properties (coercivity Hc < 0.5 Oe, 4πMs …