Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Modeling Noise Coupling Between Package And Pcb Power/Ground Planes With An Efficient 2-D Fdtd/Lumped Element Method, Ting-Kuang Wang, Sin-Ting Chen, Chi-Wei Tsai, Sung-Mao Wu, James L. Drewniak, Tzong-Lin Wu Jul 2016

Modeling Noise Coupling Between Package And Pcb Power/Ground Planes With An Efficient 2-D Fdtd/Lumped Element Method, Ting-Kuang Wang, Sin-Ting Chen, Chi-Wei Tsai, Sung-Mao Wu, James L. Drewniak, Tzong-Lin Wu

James K. Wu, M.D.

An efficient numerical approach based on the 2-D finite-difference time-domain (FDTD) method is proposed to model the power/ground plane noise or simultaneously switching noise (SSN), including the interconnect effect between the package and the print circuit board (PCB). The space between the power and ground planes on the package and PCB are meshed with 2-D cells. The equivalent R-L-C circuits of the via and the solder balls connecting the package and PCB can be incorporated into a 2-D Yee cell based on a novel integral formulation in the time domain. An efficient recursive updating algorithm is proposed to fit the …


Numerical Modeling Of Periodic Composite Media For Electromagnetic Shielding Application, Dagang Wu, Rui Qiang, Ji Chen, Ce Liu, Marina Koledintseva, James L. Drewniak, Bruce Archambeault Jul 2016

Numerical Modeling Of Periodic Composite Media For Electromagnetic Shielding Application, Dagang Wu, Rui Qiang, Ji Chen, Ce Liu, Marina Koledintseva, James L. Drewniak, Bruce Archambeault

James K. Wu, M.D.

This paper describes a methodology to extract effective electrical properties for periodic composite medium. The extraction algorithm is based on a periodic finite-difference time-domain (FDTD) method. The results are compared with conventional mixing theories and 3D Fourier series expansion methods. Two results show satisfactory agreement. With the extracted effective permittivity and conductivity, one can readily use these parameters to study electrical properties of composite materials with arbitrary micro-geometry and the shielding effects of using composite materials.


Characterizing Package/Pcb Pdn Interactions From A Full-Wave Finite-Difference Formulation, Shishuang Sun, David Pommerenke, James L. Drewniak, Kai Xiao, Sin-Ting Chen, Tzong-Lin Wu Jul 2016

Characterizing Package/Pcb Pdn Interactions From A Full-Wave Finite-Difference Formulation, Shishuang Sun, David Pommerenke, James L. Drewniak, Kai Xiao, Sin-Ting Chen, Tzong-Lin Wu

James K. Wu, M.D.

A novel approach of equivalent circuit model extraction is developed for modeling of integrated package and PCB power distribution networks (PDN). The integrated PDNs are formulated from a full-wave finite-difference algorithm, and the resulting matrix equations are converted to equivalent circuits. The equivalent circuits, as well as the decoupling capacitors and the attached circuit components, can be analyzed with a SPICE-like solver in both the time and frequency domains. The modeling of dielectric loss is also addressed. The method is used to model three PDN problems including a simple power bus, a BGA package mounting on a PCB, and a …


Fdtd Modeling Of Isotropic Dispersive Magnetic Materials, Jing Wu, Marina Koledintseva, James L. Drewniak, David Pommerenke Jul 2016

Fdtd Modeling Of Isotropic Dispersive Magnetic Materials, Jing Wu, Marina Koledintseva, James L. Drewniak, David Pommerenke

James K. Wu, M.D.

Numerical analysis using the finite-difference time-domain (FDTD) algorithm with a piecewise linear recursive convolution (PLRC) procedure for linear isotropic dispersive magnetic materials is presented. The frequency dependence of susceptibility used for this algorithm is represented in Debye, narrowband Lorentzian, and wideband Lorentzian forms, depending on the ratio of the resonance frequency and the resonance line width. Some numerical examples along with measurements are provided.


Representation Of Permittivity For Multiphase Dielectric Mixtures In Fdtd Modeling, Marina Koledintseva, J. Wu, H. Zhang, James L. Drewniak, Konstantin Rozanov Jul 2016

Representation Of Permittivity For Multiphase Dielectric Mixtures In Fdtd Modeling, Marina Koledintseva, J. Wu, H. Zhang, James L. Drewniak, Konstantin Rozanov

James K. Wu, M.D.

A simple method of approximating frequency characteristics of composites in a form convenient for time-domain numerical modeling is proposed. The frequency characteristics can be obtained from experiment or calculations based on the Maxwell Garnett mixing formalism. The resultant frequency characteristic might be of a complex shape corresponding to a combination of a number of absorption peaks. The approximation is made by a series of Debye-like terms using a genetic algorithm (GA). This leads to the necessity of taking a number of terms in the approximating series. Every term corresponds to its pole, i.e., the frequency where the maximum loss occurs. …


A Cn-Fdtd Scheme And Its Application To Vlsi Interconnects/Substrate Modeling, Rui Qiang, Dagang Wu, Ji Chen, Chen Wang, James L. Drewniak Jul 2016

A Cn-Fdtd Scheme And Its Application To Vlsi Interconnects/Substrate Modeling, Rui Qiang, Dagang Wu, Ji Chen, Chen Wang, James L. Drewniak

James K. Wu, M.D.

In this paper, a two-dimensional (2D) Crank-Nicholason (CN) finite difference time domain (FDTD) method is proposed for VLSI interconnect/substrate characterization. Through rigorous truncation and dispersion error analyses, a guideline on using this technique is presented. Several iterative solvers are investigated to accelerate the solution of the CN-FDTD scheme. Numerical examples are given to demonstrate the accuracy and the efficiency of the proposed algorithm.