Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Selected Works

Bradley Minch

Current-mode circuits

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Multiple-Input Translinear Element Networks, Bradley Minch, Paul Hasler, Chris Diorio Jul 2012

Multiple-Input Translinear Element Networks, Bradley Minch, Paul Hasler, Chris Diorio

Bradley Minch

We describe a new class of translinear circuits that accurately embody product-of-power-law relationships in the current signal domain. We call such circuits multiple-input translinear element (MITE) networks. A MITE is a circuit element, which we defined recently that produces an output current that is exponential in a weighted sum of its input voltages. We describe intuitively the basic operation of MITE networks and provide a systematic matrix technique for analyzing the nonlinear relationships implemented by any given circuit. We also show experimental data from three MITE networks that were fabricated in a 1.2-μm double-poly CMOS process.


Synthesis Of Static And Dynamic Multiple-Input Translinear Element Networks, Bradley Minch Jul 2012

Synthesis Of Static And Dynamic Multiple-Input Translinear Element Networks, Bradley Minch

Bradley Minch

In this paper, we discuss the process of synthesizing static and dynamic multiple-input translinear element (MITE) networks systematically from high-level descriptions given in the time domain, in terms of static polynomial constraints and algebraic differential equations. We provide several examples, illustrating the process for both static and dynamic system constraints. Although our examples will all involve MITE networks, the early steps of the synthesis process are equally applicable to the synthesis of static and dynamic translinear-loop circuits.


Construction And Transformation Of Multiple-Input Translinear Element Networks, Bradley Minch Jul 2012

Construction And Transformation Of Multiple-Input Translinear Element Networks, Bradley Minch

Bradley Minch

We present a simple algorithmic procedure for constructing a multiple-input translinear element (MITE) network from a translinear-loop equation. We also give a number of MITE-network transformations that alter the structure of the MITE network without altering the translinear-loop equation that it embodies. The results that we establish in this paper serve as foundations for the synthesis of both static and dynamic MITE networks from high-level specifications.