Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Old Dominion University

2014

Nanosecond pulse

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Numerical Study Of Poration And Ionic Conduction In Nanopores Caused By High-Intensity, Nanosecond Pulses In Cell, Hao Qiu Jul 2014

Numerical Study Of Poration And Ionic Conduction In Nanopores Caused By High-Intensity, Nanosecond Pulses In Cell, Hao Qiu

Electrical & Computer Engineering Theses & Dissertations

This dissertation focuses on the dynamics and bioeffects of electroporation of biological cell and ionic conduction in nanopores under high-intensity, nanosecond pulses. The electroporation model utilized the current continuity equation and the asymptotic Smoluchowski equation to explore the transmembrane potential and pore density of the plasma and intracellular membranes; the ionic conduction model employed the Poisson-Nernst-Planck equations and the Navier-Stokes equations to analyze the ionic current and ion concentration profile.

Nanosecond electric pulses of high-intensity amplitude can initiate electroporation of intracellular organelles. The pulse parameters and cell electrical properties, that can selectively electroporate liposomes but keep the plasma and nuclear …


Calcium-Mediated Pore Expansion And Cell Death Following Nanoelectroporation, Olga N. Pakhomova, Betsy Gregory, Iurii Semenov, Andrei G. Pakhomov Jan 2014

Calcium-Mediated Pore Expansion And Cell Death Following Nanoelectroporation, Olga N. Pakhomova, Betsy Gregory, Iurii Semenov, Andrei G. Pakhomov

Bioelectrics Publications

Opening of long-lived pores in the cell membrane is the principal primary effect of intense, nanosecond pulsed electric field (nsPEF). Here we demonstrate that the evolution of pores, cell survival, the time and the mode of cell death (necrotic or apoptotic) are determined by the level of external Ca2+ after nsPEF. We also introduce a novel, minimally disruptive technique for nsEP exposure of adherent cells on indium tin oxide (ITO)-coated glass coverslips, which does not require cell detachment and enables fast exchanges of bath media. Increasing the Ca2+ level from the nominal 2–5 μM to 2 mM for …