Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 122

Full-Text Articles in Engineering

Data-Driven Enhanced Energy Management System Applications For Energy Control Centers, Dulip Madurasinghe Aug 2024

Data-Driven Enhanced Energy Management System Applications For Energy Control Centers, Dulip Madurasinghe

All Dissertations

This dissertation explores the pressing needs of modern bulk power system operation and control and delves into enhancements to EMS applications with minimal infrastructure development. The dissertation investigates three main EMS application enhancements. The transmission network topology processing (TNTP) is a foundational application of the EMS. A physics-based hierarchical transmission network topology processing (H-TNTP), including substation configuration identification, to improve efficiency and reliability is proposed. Secondly, a multi-level distributed linear state estimation (D-LSE) approach solely based on PMUs is proposed utilizing H-TNTP as the network modeling tool. The D-LSE can conduct linear state estimation (LSE) at either substation, area or …


Time-Domain Line Protection In Presence Of Renewables, Prabin Adhikari Aug 2024

Time-Domain Line Protection In Presence Of Renewables, Prabin Adhikari

All Dissertations

Inverter based resources (IBRs) are crucial in integrating renewable energy sources into the power grid. However, their unique fault characteristics, significantly different from synchronous generators (SGs), present several challenges for existing line protection schemes at both transmission and distribution levels. These schemes, reliant on distance and directional relays designed in phasor domain, are not well-suited for IBRs. Most published literature addressing this problem concentrates on altering the control design of inverters. However, this approach faces practical limitations. Inverter controls, often proprietary, are not readily accessible to utilities, rendering the control-based solutions impractical for widespread implementation.

To address this challenge, this …


Computer Vision Algorithms For Assessment Of Surgical Suturing Skill Using Hand And Needle Motion, Jianxin Gao Aug 2024

Computer Vision Algorithms For Assessment Of Surgical Suturing Skill Using Hand And Needle Motion, Jianxin Gao

All Dissertations

Surgical suturing skill assessment is a crucial part of surgical education. Vascular surgery educators have developed a simulation-based examination called Fundamentals of Vascular Surgery, which includes a clock-face model for assessing open surgical suturing skills. The clock-face model, however, requires the valuable time of expert surgeons to determine examinees' skills. Moreover, expert surgeons have different judgments for appropriate sutures, which leads to inconsistent grading. These limitations motivate us to use sensors to measure examinees' needle motions and hand motions during the clock-face suturing exercises, and then use the measurements for objective suturing skill assessment.

To assess suturing skills based on …


Convex Approach To Data-Driven Optimal Control With Safety Constraints Using Linear Transfer Operator, Joseph Raphel Moyalan Aug 2024

Convex Approach To Data-Driven Optimal Control With Safety Constraints Using Linear Transfer Operator, Joseph Raphel Moyalan

All Dissertations

This thesis is concerned with the data-driven solution to the optimal control problem with safety constraints for a class of control-affine nonlinear systems. Designing optimal control satisfying safety constraints is a problem of interest in various applications, including robotics, power systems, transportation networks, and manufacturing. This problem is known to be non-convex. One of this thesis's main contributions is providing a convex formulation to this non-convex problem. The second main contribution is providing a data-driven framework for solving the control problem with safety constraints. The linear operator theoretic framework involving Perron-Frobenius and Koopman operators provides the convex formulation and associated …


Design, Fabrication, And Characterization Of Advanced High-Power Single-Mode 9xxnm Semiconductor Lasers, Xiaolei Zhao May 2024

Design, Fabrication, And Characterization Of Advanced High-Power Single-Mode 9xxnm Semiconductor Lasers, Xiaolei Zhao

All Dissertations

This thesis presents the comprehensive design, fabrication, and demonstration of advanced high-power, high-efficiency single-mode semiconductor lasers operating at a wavelength of 9xxnm. We begin with the design of the laser epitaxial structure, serving as the cornerstone for achieving high-power high-efficiency lasers. Our methodology integrates a semi-analytical calculation model, which accounts for Longitudinal Spatial Hole Burning (LSHB) and Two-Photon Absorption (TPA) effects, facilitating a thorough exploration of how design parameters influence output power and conversion efficiency. This approach offers an effective and time-efficient epitaxial structure optimization strategy compared to conventional full 3D simulation models.

Subsequently, we demonstrate high-power, high-efficiency ridge waveguide …


Photovoltaics And Battery-Based End-To-End Direct Current Sustainable Power Networks- Concept, Design, And Control, Vishwas Powar May 2024

Photovoltaics And Battery-Based End-To-End Direct Current Sustainable Power Networks- Concept, Design, And Control, Vishwas Powar

All Dissertations

The consequences of climate change have emphasized the need for a power network that is centered around green, low-cost, and renewable sources of energy. Currently, photovoltaics (PV) and wind turbines are the only two technologies that can convert renewable energy from the sun and wind, respectively, into large-scale power for the electricity network. This dissertation aims to provide a novel solution to implement direct current-based architecture for PV generation coupled with lithium-ion battery storage in an efficient and sustainable manner. Such a power network can enable efficiency, reliability, low cost, and sustainability with minimum impact on the environment. The first …


Robust And Trustworthy Deep Learning: Attacks, Defenses And Designs, Bingyin Zhao May 2024

Robust And Trustworthy Deep Learning: Attacks, Defenses And Designs, Bingyin Zhao

All Dissertations

Deep neural networks (DNNs) have achieved unprecedented success in many fields. However, robustness and trustworthiness have become emerging concerns since DNNs are vulnerable to various attacks and susceptible to data distributional shifts. Attacks such as data poisoning and out-of-distribution scenarios such as natural corruption significantly undermine the performance and robustness of DNNs in model training and inference and impose uncertainty and insecurity on the deployment in real-world applications. Thus, it is crucial to investigate threats and challenges against deep neural networks, develop corresponding countermeasures, and dig into design tactics to secure their safety and reliability. The works investigated in this …


Real-Time Degradation Abatement Framework For Energy Storage System In Automotive Application Using Data-Driven Approaches, Laxman Timilsina May 2024

Real-Time Degradation Abatement Framework For Energy Storage System In Automotive Application Using Data-Driven Approaches, Laxman Timilsina

All Dissertations

The increasing popularity of electric vehicles (EVs) is driven by their compatibility with sustainable energy goals. However, the decline in the performance of energy storage systems, such as batteries, due to their degradation puts EVs and hybrid electric vehicles (HEVs) at a disadvantage compared to traditional internal combustion engine (ICE) vehicles. The batteries used in these vehicles have limited life. The degradation of the battery is accelerated by the operating conditions of the vehicle, which further reduces its life and increases the reliability and economic concerns for the vehicle’s operation. The aging mechanism inside a battery cannot be eliminated but …


Hpc-Enabled Fast And Configurable Dynamic Simulation, Analysis, And Learning For Complex Power System Adaptation And Control, Cong Wang Dec 2023

Hpc-Enabled Fast And Configurable Dynamic Simulation, Analysis, And Learning For Complex Power System Adaptation And Control, Cong Wang

All Dissertations

This dissertation presents an HPC-enabled fast and configurable dynamic simulation, analysis, and learning framework for complex power system adaptation and control. Dynamic simulation for a large transmission system comprising thousands of buses and branches implies the latency of complicated numerical computations. However, faster-than-real-time execution is often required to provide timely support for power system planning and operation. The traditional approaches for speeding up the simulation demand extensive computing facilities such as CPU-based multi-core supercomputers, resulting in heavily resource-dependent solutions. In this work, by coupling the Message Passing Interface (MPI) protocol with an advanced heterogeneous programming environment, further acceleration can be …


A Scalable Transmission And Distribution Co-Simulation Platform For Ibr-Heavy Power Systems, Yousu Chen Dec 2023

A Scalable Transmission And Distribution Co-Simulation Platform For Ibr-Heavy Power Systems, Yousu Chen

All Dissertations

The grid is evolving rapidly to meet the requirements of the clean energy transition. This evolution involves an increasing penetration of renewable energy resources and new complexities with a larger number of devices and controls spread across transmission and distribution networks. The boundary between transmission and distribution becomes blur. Consequently, we face significant challenges in managing the fundamental shift in power system physics. The ubiquitous use of Inverter Based Resources (IBRs) throughout the transmission and distribution systems has made it more difficult for the grid to maintain grid stability under dynamic conditions. Therefore, there is a strong need to explore …


Model-Free Methods To Analyze Pmu Data In Real-Time For Situational Awareness And Stability Monitoring, Sean Kantra Dec 2023

Model-Free Methods To Analyze Pmu Data In Real-Time For Situational Awareness And Stability Monitoring, Sean Kantra

All Dissertations

This dissertation presents and evaluates model-free methodologies to process Phasor Measurement Unit (PMU) data. Model-based PMU applications require knowledge of the system topology, most frequently the system admittance matrix. For large systems, the admittance matrix, or other system parameters, can be time-consuming to integrate into supporting PMU applications. These data sources are often sensitive and can require permissions to access, delaying the implementation of model-based approaches. This dissertation focuses on evaluating individual model-free applications to efficiently perform functions of interest to system operators for real-time situational awareness. Real-time situational awareness is evaluated with respect to central digitization where the PMU …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt Dec 2023

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Integrating Sensor Development, Risk Assessment, And Community Engagement To Support Environmental Justice In The Rural Community Of El Tiple, Colombia, David Bahamon Pinzon Aug 2023

Integrating Sensor Development, Risk Assessment, And Community Engagement To Support Environmental Justice In The Rural Community Of El Tiple, Colombia, David Bahamon Pinzon

All Dissertations

In Colombia, ethnic communities have traditionally been responsible stewards of natural resources. They recognize the importance of these resources for their livelihood, as well as their ancestral and cultural heritage. El Tiple, a rural Afro-Colombian community, has been affected by the incursion of private corporations that promoted the expansion of sugarcane monocrops in their territory. Since the introduction of the monoculture industry, local freshwater sources have been depleted due to intensive water use for irrigation of the sugarcane crops. Additionally, the intensive usage of agrochemicals has been linked with loss of native flora, damages to family farms, and pollution of …


Accurate Orientation Control Of Tendon Driven Continuum Robots That Exhibit Elasticity, Manu Srivastava Aug 2023

Accurate Orientation Control Of Tendon Driven Continuum Robots That Exhibit Elasticity, Manu Srivastava

All Dissertations

This dissertation makes new contributions to the modeling and implementation of Tendon Driven Continuum Robots (TDCRs). Specifically, motivated by 3D printing of concrete using a continuum hose robot in construction applications, we focus on TDCRs featuring compliance in the robot backbone and actuating tendons, e.g. surgical robots/endoscopes/catheters with tendon actuation. We expand previous mechanics-based models to show how and why such compliance significantly restricts performance when traditional kinematics-based planning and control techniques are applied.

The main contribution of this work is a new Elasticity Compensation(EC) model that explains why the ad hoc approach of preloading/pretensioning the tendons compensates for compliance …


Investigation Of Vo2 Thin Films And Devices For Opto-Electromechanical Applications, Samee Azad Aug 2023

Investigation Of Vo2 Thin Films And Devices For Opto-Electromechanical Applications, Samee Azad

All Dissertations

Specialized and optimized low pressure direct oxidation technique have been implemented to synthesize high quality VO2 thin films on various substrates (sapphire, SiO2/Si, AT-cut quartz, GaN/AlGaN/GaN/Si and muscovite). Structural and surface characterization methods such as X-ray diffraction, Raman spectroscopy and atomic force microscopy have been administered on the grown VO2 films which indicate their material quality. Transition of characteristics of the VO2 films are caused by semiconductor metal transition (SMT). This phenomenon is attributed as the change maker in transition of resistivity and transmitted optical power through the VO2 films. Apart the substrates mentioned, …


Improved Vehicle-Bridge Interaction Modeling And Automation Of Bridge System Identification Techniques, Omar Abuodeh Aug 2023

Improved Vehicle-Bridge Interaction Modeling And Automation Of Bridge System Identification Techniques, Omar Abuodeh

All Dissertations

The Federal Highway Administration (FHWA) recognizes the necessity for cost-effective and practical system identification (SI) techniques within structural health monitoring (SHM) frameworks for asset management applications. Indirect health monitoring (IHM), a promising SHM approach, utilizes accelerometer-equipped vehicles to measure bridge modal properties (e.g., natural frequencies, damping ratios, mode shapes) through bridge vibration data to assess the bridge's condition. However, engineers and researchers often encounter noise from road roughness, environmental factors, and vehicular components in collected vehicle signals. This noise contaminates the vehicle signal with spurious modes corresponding to stochastic frequencies, impacting damage monitoring assessments. Thus, an efficient and reliable SI …


Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm May 2023

Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm

All Dissertations

Electrically assisted manufacturing (EAM) is the direct application of an electric current to a workpiece during manufacturing. This advanced manufacturing process has been shown to produce anomalous effects which extend beyond the current state of modeling of thermal influences. These purported non-thermal effects have collectively been termed electroplastic effects (EPEs).

While there is a distinct difference in results between steady-state (ideal DC) testing and pulsed current testing, the very definition of these two EAM methods has not been well established. A "long" pulse may be considered DC current; a "short" pulse may produce electroplastic effects; and even "steady-state" current shapes …


Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin May 2023

Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin

All Dissertations

Direct current (DC) distribution system has shown potential over the alternative current (AC) distribution system in some application scenarios, e.g., electrified transportation, renewable energy, data center, etc. Because of the fast response speed, DC solid-state circuit breaker (SSCB) becomes a promising technology for the future power electronics intensive DC energy system with fault-tolerant capability. First, a thorough literature survey is performed to review the DC-SSCB technology. The key components for DC-SSCB, including power semiconductors, topologies, energy absorption units, and fault detection circuits, are studied. It is observed that the prior studies mainly focus on the basic interruption capability of the …


Enabling High Throughput And Reliable Low Latency Communication Over Vehicular Mobility In Next-Generation Cellular Networks, Snigdhaswin Kar May 2023

Enabling High Throughput And Reliable Low Latency Communication Over Vehicular Mobility In Next-Generation Cellular Networks, Snigdhaswin Kar

All Dissertations

The fifth-generation (5G) networks and beyond need paradigm shifts to realize the exponentially increasing demands of next-generation services for high throughputs, low latencies, and reliable communication under various mobility scenarios. However, these promising features have critical gaps that need to be filled before they can be fully implemented for mobile applications in complex environments like smart cities. Although the sub-6 GHz bands can provide reliable and larger coverage, they cannot provide high data rates with low latencies due to a scarcity of spectrum available in these bands. Millimeter wave (mmWave) communication is a key enabler for a significant increase in …


Photovoltaics, Batteries, And Silicon Carbide Power Electronics Based Infrastructure For Sustainable Power Networks, Prahaladh Paniyil May 2023

Photovoltaics, Batteries, And Silicon Carbide Power Electronics Based Infrastructure For Sustainable Power Networks, Prahaladh Paniyil

All Dissertations

The consequences of climate change have emphasized the need for a power network that is centered around clean, green, and renewable sources of energy. Currently, Photovoltaics (PV) and wind turbines are the only two modes of technology that can convert renewable energy of the sun and wind respectively into large-scale power for the electricity network. This dissertation aims at providing a novel solution to implement these sources of power (majorly PV) coupled with Lithium-ion battery storage in an efficient and sustainable approach. Such a power network can enable efficiency, reliability, low-cost, and sustainability with minimum impact to the environment.

The …


Deep Reinforcement Learning And Game Theoretic Monte Carlo Decision Process For Safe And Efficient Lane Change Maneuver And Speed Management, Shahab Karimi May 2023

Deep Reinforcement Learning And Game Theoretic Monte Carlo Decision Process For Safe And Efficient Lane Change Maneuver And Speed Management, Shahab Karimi

All Dissertations

Predicting the states of the surrounding traffic is one of the major problems in automated driving. Maneuvers such as lane change, merge, and exit management could pose challenges in the absence of intervehicular communication and can benefit from driver behavior prediction. Predicting the motion of surrounding vehicles and trajectory planning need to be computationally efficient for real-time implementation. This dissertation presents a decision process model for real-time automated lane change and speed management in highway and urban traffic. In lane change and merge maneuvers, it is important to know how neighboring vehicles will act in the imminent future. Human driver …


Iii-Nitride Triangular Microcantilevers For Multimodal Sensing Applications, Balaadithya Uppalapati May 2023

Iii-Nitride Triangular Microcantilevers For Multimodal Sensing Applications, Balaadithya Uppalapati

All Dissertations

Micro-electromechanical systems (MEMS)-based sensors have gained significant attention due to their ability to sense, measure, and process various physical, chemical, and biological parameters. The small size of MEMS sensors provides numerous advantages, including low power consumption, high sensitivity, and rapid response time, making them suitable for various applications in healthcare, automotive, aerospace, and consumer electronics.

In the past few years, AlGaN/GaN MEMS devices have been found to offer several advantages over silicon-based MEMS devices. One of the main advantages of AlGaN/GaN MEMS is their high sensitivity to surface stresses and forces due to their high piezoelectric coefficients. This sensitivity allows …


Enhanced Mobile Networking Using Multi-Connectivity And Packet Duplication In Next-Generation Cellular Networks, Prabodh Mishra May 2023

Enhanced Mobile Networking Using Multi-Connectivity And Packet Duplication In Next-Generation Cellular Networks, Prabodh Mishra

All Dissertations

Modern cellular communication systems need to handle an enormous number of users and large amounts of data, including both users as well as system-oriented data. 5G is the fifth-generation mobile network and a new global wireless standard that follows 4G/LTE networks. The uptake of 5G is expected to be faster than any previous cellular generation, with high expectations of its future impact on the global economy. The next-generation 5G networks are designed to be flexible enough to adapt to modern use cases and be highly modular such that operators would have the flexibility to provide selective features based on user …


A Study On Asymmetric Perfect Vortex: Fractional Orbital Angular Momentum And Nonlinear Interaction, Kunjian Dai May 2023

A Study On Asymmetric Perfect Vortex: Fractional Orbital Angular Momentum And Nonlinear Interaction, Kunjian Dai

All Dissertations

In this work, the manipulation including generation and detection of the asymmetric perfect vortex (APV) carrying fractional orbital angular momentum (OAM) was demonstrated and discussed. All the manipulation of the modes is in real-time which provides a perfect tool for sensing the dynamic properties of complex media. The OAM-involved nonlinear conversion, specifically the second-harmonic generation (SHG) using the APV and asymmetric Bessel-Gaussian (BG) beams was studied in detail.

The generation and detection of the APV are based on the HOBBIT concept which includes acoustic optical deflector (AOD) and log-polar coordinate transformation optics. The RF signal driving the AOD allows the …


Enhancing The Performance Of Poly(3-Hexylthiophene) Based Organic Thin-Film Transistors Using An Interface Engineering Method, Eyob Negussie Tarekegn Dec 2022

Enhancing The Performance Of Poly(3-Hexylthiophene) Based Organic Thin-Film Transistors Using An Interface Engineering Method, Eyob Negussie Tarekegn

All Dissertations

An original design and photolithographic fabrication process for poly(3-hexylthiophene-2, 5-diyl) (P3HT) based organic thin-film transistors (OTFTs) is presented. The structure of the transistors was based on the bottom gate bottom contact OTFT. The fabrication process was efficient, cost-effective, and relatively straightforward to implement. Current–voltage (I-V) measurements were performed to characterize the primary electronic properties of the transistors. The measured mobility of these transistors was significantly higher than most results reported in the literature for other similar bottom gate bottom contact P3HT OTFTs. The higher mobility is explained primarily by the effectiveness of the fabrication process in keeping the interfacial layers …


Permanently-Installed Distributed Pressure Sensors For Downhole Applications, Xuran Zhu Dec 2022

Permanently-Installed Distributed Pressure Sensors For Downhole Applications, Xuran Zhu

All Dissertations

Technology advancements (e.g., hydraulic fracturing and horizontal drilling) to recover unconventional oil and gas (UOG) resources are critical in maintaining future U.S. oil and gas production levels. Permanently installed distributed downhole pressure sensors could monitor fracture propagation, assess the effectiveness of hydraulic fracturing, and optimize hydraulic fracturing placement so that overall UOG recovery efficiency can be increased. However, the harsh environment (high temperatures, high pressures, strong vibration, and presence of brine, mud, debris, hydrate, and various gases), the long data telemetry distance, and the requirements of reliability and service lifetime make the downhole monitoring a very challenging task. To combat …


Multi-Criteria Performance Evaluation And Control In Power And Energy Systems, Payam Ramezani Badr Dec 2022

Multi-Criteria Performance Evaluation And Control In Power And Energy Systems, Payam Ramezani Badr

All Dissertations

The role of intuition and human preferences are often overlooked in autonomous control of power and energy systems. However, the growing operational diversity of many systems such as microgrids, electric/hybrid-electric vehicles and maritime vessels has created a need for more flexible control and optimization methods. In order to develop such flexible control methods, the role of human decision makers and their desired performance metrics must be studied in power and energy systems. This dissertation investigates the concept of multi-criteria decision making as a gateway to integrate human decision makers and their opinions into complex mathematical control laws. There are two …


Implementation Of Sic Power Electronics For Green Energy Based Electrification Of Transportation, Naireeta Deb Dec 2022

Implementation Of Sic Power Electronics For Green Energy Based Electrification Of Transportation, Naireeta Deb

All Dissertations

Increase in greenhouse gas emission poses a threat to the quality of air thus threatening the future of living beings on earth. A large part of the emission is produced by transport vehicles. Electric vehicles (EVs) are a great solution to this threat. They will completely replace the high usage of hydrocarbons in the transport sector. Energy efficiency and reduced local pollution can also be expected with full implementation of electrification of transportation. However, the current grid is not prepared to take the power load of EV charging if it were to happen readily. Moreover, critics are doubtful about the …


Modeling, Control And Estimation Of Reconfigurable Cable Driven Parallel Robots, Adhiti Raman Thothathri Dec 2022

Modeling, Control And Estimation Of Reconfigurable Cable Driven Parallel Robots, Adhiti Raman Thothathri

All Dissertations

The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature.

This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while …


High-Performance Vlsi Architectures For Lattice-Based Cryptography, Weihang Tan Dec 2022

High-Performance Vlsi Architectures For Lattice-Based Cryptography, Weihang Tan

All Dissertations

Lattice-based cryptography is a cryptographic primitive built upon the hard problems on point lattices. Cryptosystems relying on lattice-based cryptography have attracted huge attention in the last decade since they have post-quantum-resistant security and the remarkable construction of the algorithm. In particular, homomorphic encryption (HE) and post-quantum cryptography (PQC) are the two main applications of lattice-based cryptography. Meanwhile, the efficient hardware implementations for these advanced cryptography schemes are demanding to achieve a high-performance implementation.

This dissertation aims to investigate the novel and high-performance very large-scale integration (VLSI) architectures for lattice-based cryptography, including the HE and PQC schemes. This dissertation first presents …