Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Brigham Young University

Remote sensing

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Estimation Of Size And Rotations Of Icebergs From Historical Data Utilizing Scatterometer Data, Jeffrey Scott Budge Jun 2017

Estimation Of Size And Rotations Of Icebergs From Historical Data Utilizing Scatterometer Data, Jeffrey Scott Budge

Theses and Dissertations

In this thesis, the development and methodology of a new, consolidated BYU/NIC Antarctic Iceberg Tracking Database is presented. The new database combines data from the original BYU daily iceberg tracking database derived from scatterometers, and the National Ice Center's weekly Antarctic iceberg tracking database derived from mostly optical and infrared sensors. Using this data, interpolation methods and statistical analyses of iceberg locations are discussed. The intent of this database is to consolidate iceberg location data in order to increase accessibility to users.Active microwave remote sensing instruments are used to track tabular icebergs and provide a daily estimate of their positions …


Extension Of The Quikscat Sea Ice Extent Data Set With Oscat And Ascat Data, Jordan Curtis Hill Mar 2017

Extension Of The Quikscat Sea Ice Extent Data Set With Oscat And Ascat Data, Jordan Curtis Hill

Theses and Dissertations

Polar sea ice measurements are an important contribution to global climate models. Passive and active microwave remote sensing instruments are used to track global trends in polar sea ice growth and retreat from day to day. A scatterometer sea ice extent data set is valuable for comparison with other radiometer data sets and ground based measurements. This scatterometer sea ice record began with the NASA Scatterometer (NSCAT) and continued with the Quick Scatterometer (QuikSCAT) data set. The Ku-band Oceansat-2 scatterometer (OSCAT) is very similar to the Quick Scatterometer, which operated from 1999 to 2009. OSCAT continues the Ku-band scatterometer data …


Analysis, Validation, And Improvement Of High-Resolution Wind Estimates From The Advanced Scatterometer (Ascat), Jeffrey Richard Blodgett Dec 2014

Analysis, Validation, And Improvement Of High-Resolution Wind Estimates From The Advanced Scatterometer (Ascat), Jeffrey Richard Blodgett

Theses and Dissertations

The standard L2B ocean wind product from the Advanced Scatterometer (ASCAT) is retrieved as a 25 km product on a 12.5 km grid. Ultra-high resolution (UHR) processing allows ASCAT wind retrieval on a high-resolution 1.25 km grid. Ideally, such a high-resolution sample grid provides wind information down to a 2.5 km scale, allowing better analysis of winds with high spatial variability such as those in near-coastal regions and storms. Though the wind field is sampled on a finer grid, the actual data resolution needs to be validated. This thesis provides an analysis and validation of ASCAT UHR wind estimates in …


Sea Ice Mapping Using Enhanced Resolution Advanced Scatterometer Images, Steven Joseph Reeves Apr 2012

Sea Ice Mapping Using Enhanced Resolution Advanced Scatterometer Images, Steven Joseph Reeves

Theses and Dissertations

Sea ice is of great interest due to its effect on the global climate, the Earth's ecosystem, and human activities. Microwave remote sensing has proven to be an effective way to measure many of the characteristics of sea ice. In particular, several algorithms map the daily sea ice extent using a variety of instruments. Enhanced resolution images generated from the Scatterometer Image Reconstruction (SIR) algorithm can be used to generate a high resolution ice extent map. Previous algorithms using SIR images were developed for scatterometers which are no longer operational. The Advanced Scatterometer (ASCAT) is a newer scatterometer which has …


A C-Band Scatterometer Simultaneous Wind/Rain Retrieval Method, David G. Long, Congling Nie Nov 2008

A C-Band Scatterometer Simultaneous Wind/Rain Retrieval Method, David G. Long, Congling Nie

Faculty Publications

Using collocated ERS scatterometer (ESCAT), Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), and European Centre for Medium-Range Weather Forecasts (ECMWF) data, the effects of rain on ESCAT wind-only retrieval are evaluated. Additional scattering from rain causes estimated wind speeds to appear higher than expected. Selected directions of the rain-corrupted wind vectors are biased toward along-track directions under conditions of heavy rain, which is regardless of the true wind direction. Rain becomes more significant for data acquired at a high incidence angle. To compensate for rain-induced backscatter, a simultaneous wind/rain retrieval (SWRR) method, which simultaneously retrieves wind velocity and surface …


Monitoring The Antarctic Ice Sheet From Space, Benjamin Rule Lambert Jun 2008

Monitoring The Antarctic Ice Sheet From Space, Benjamin Rule Lambert

Theses and Dissertations

The Antarctic ice sheet is a geophysically - and in an age of growing concern about global warming, geopolitically - important portion of Earth. The composition and dynamics of the Antarctic ice sheet influence global climate patterns, global sea level and the planet's radiation budget. Recent evidence also suggests that the long term stability of portions of the ice sheet may be in jeopardy. In this thesis I use data from three Ku-band space-borne scatterometers to monitor changes in the backscatter signature of the Antarctic ice sheet from 1978 through 2007. Significant changes in backscatter, which result from geophysical changes …


Particle Filter Based Mosaicking For Forest Fire Tracking, Justin Mathew Bradley Jul 2007

Particle Filter Based Mosaicking For Forest Fire Tracking, Justin Mathew Bradley

Theses and Dissertations

Using autonomous miniature air vehicles (MAVs) is a cost-effective, simple method for collecting data about the size, shape, and location characteristics of a forest fire. However, noise in measurements used to compute pose (location and attitude) of the on-board camera leads to significant errors in the processing of collected video data. Typical methods using MAVs to track fires attempt to find single geolocation estimates and filter that estimate with subsequent observations. While this is an effective method of resolving the noise to achieve a better geolocation estimate, it reduces a fire to a single point or small set of points. …


Wind Scatterometry With Improved Ambiguity Selection And Rain Modeling, David W. Draper Dec 2003

Wind Scatterometry With Improved Ambiguity Selection And Rain Modeling, David W. Draper

Theses and Dissertations

Although generally accurate, the quality of SeaWinds on QuikSCAT scatterometer ocean vector winds is compromised by certain natural phenomena and retrieval algorithm limitations. This dissertation addresses three main contributers to scatterometer estimate error: poor ambiguity selection, estimate uncertainty at low wind speeds, and rain corruption. A quality assurance (QA) analysis performed on SeaWinds data suggests that about 5% of SeaWinds data contain ambiguity selection errors and that scatterometer estimation error is correlated with low wind speeds and rain events.

Ambiguity selection errors are partly due to the "nudging" step (initialization from outside data). A sophisticated new non-nudging ambiguity selection approach …


Modeling Electromagnetic Wave Propagation In Electrically Large Structures, Jon Wallace Jul 2003

Modeling Electromagnetic Wave Propagation In Electrically Large Structures, Jon Wallace

Theses and Dissertations

Existing unified numerical electromagnetic methods are often unable to analyze electrically large structures due to the amount of memory and processing power required, necessitating approximate analyses with limited applicability. In this research a hybrid modeling methodology is adopted to solve these complex problems more efficiently than unified numerical methods and more accurately than analytical methods. Electromagnetic modeling problems are divided into two or more levels of scale. Each level analyzes a specific level of detail and only promotes the required information to the next level. The method is demonstrated by successful application to three important problems: (1) remote sensing of …


Polar Sea Ice Mapping For Seawinds, Hyrum Spencer Anderson May 2003

Polar Sea Ice Mapping For Seawinds, Hyrum Spencer Anderson

Theses and Dissertations

In recent years, the scientific community has expressed interest in the ability to observe global climate indicators such as polar sea ice. Advances in microwave remote sensing technology have allowed a large-scale and detailed study of sea ice characteristics. This thesis provides the analysis and development of sea ice mapping algorithms for the SeaWinds scatterometer. First, an in-depth analysis of the Remund Long (RL) algorithm for SeaWinds is performed. From this study, several improvements are made to the RL algorithm which enhance its performance. In addition, a new method for automated polar sea ice mapping is developed for the SeaWinds …


High Resolution Wind Retrieval For Seawinds On Quikscat, Jeremy Blaine Luke May 2003

High Resolution Wind Retrieval For Seawinds On Quikscat, Jeremy Blaine Luke

Theses and Dissertations

An algorithm has been developed that enables improved the resolution wind estimates from SeaWinds data. This thesis presents the development of three key portions of the high resolution wind retrieval algorithm: Compositing individual σ-0 measurements and Kp, Retrieved wind bias correction, and ambiguity selection for high resolution winds. The high resolution winds produced by this algorithm are expected to become a useful resource for scientists and engineers studying the ocean winds. The high resolution wind retrieval algorithm allows wind to be retrieved much closer to land than is available from the low resolution winds estimated from the same scatterometer by …


An Iterative Approach To Multisensor Sea Ice Classification, David G. Long, Mark R. Drinkwater, Quinn P. Remund Jul 2000

An Iterative Approach To Multisensor Sea Ice Classification, David G. Long, Mark R. Drinkwater, Quinn P. Remund

Faculty Publications

Characterizing the variability in sea ice in the polar regions is fundamental to an understanding of global climate and the geophysical processes governing climate changes. Sea ice can be grouped into a number of general classes with different characteristics. Multisensor data from NSCAT, ERS-2, and SSM/I are reconstructed into enhanced resolution imagery for use in ice-type classification. The resulting twelve-dimensional data set is linearly transformed through principal component analysis to reduce data dimensionality and noise levels. An iterative statistical data segmentation algorithm is developed using maximum likelihood (ML) and maximum a posteriori (MAP) techniques. For a given ice type, the …


A Cloud-Removal Algorithm For Ssm/I Data, David G. Long, Douglas L. Daum, Quinn P. Remund Jan 1999

A Cloud-Removal Algorithm For Ssm/I Data, David G. Long, Douglas L. Daum, Quinn P. Remund

Faculty Publications

Microwave radiometers, while traditionally utilized in atmospheric and oceanic studies, can also be used in land surface applications. However, the problem of undesirable atmospheric effects caused by clouds and precipitation must be addressed. In this paper, temporal composite surface brightness images are generated from special sensor microwave/imager (SSM/I) data with the aid of new algorithms to eliminate small-scale distortion caused by clouds or precipitation. Mean, second-highest value, modified maximum average (MMA), and hybrid compositing algorithms are compared. The effectiveness of each algorithm is illustrated through simulation and real data distribution analysis. The results show that the second-highest value algorithm is …


Spatial Resolution Enhancement Of Ssm/I Data, David G. Long, Douglas L. Daum Mar 1998

Spatial Resolution Enhancement Of Ssm/I Data, David G. Long, Douglas L. Daum

Faculty Publications

One of the limitations in using Special Sensor Microwave/Imager (SSM/I) data for land and vegetation studies is the relatively low-spatial resolution. To ameliorate this limitation, resolution-enhancement algorithms can be applied to the data. In this paper, the Backus-Gilbert inversion (BGI) technique and the scatterometer image-reconstruction (SIR) algorithm are investigated as possible methods for creating enhanced resolution images from SSM/I data. The two algorithms are compared via both the simulation and the actual SSM/I data. The algorithms offer similar resolution enhancement, though SIR requires significantly less computation. Sample results over two land regions of South America are presented.