Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Brigham Young University

Microfluidics

Articles 1 - 13 of 13

Full-Text Articles in Engineering

An Integrated Model Of Optofluidic Biosensor Function And Performance, Joel Greig Wright, Jr. Aug 2021

An Integrated Model Of Optofluidic Biosensor Function And Performance, Joel Greig Wright, Jr.

Theses and Dissertations

Optofluidic flow-through biosensor devices have been in development for fast bio-target detection. Utilizing the fabrication processes developed by the microelectronics industry, these biosensors can be fabricated into lab-on-a-chip devices with a degree of platform portability. This biosensor technology can be used to detect a variety of targets, and is particularly useful for the detection single molecules and nucleic acid strands. Microfabrication also offers the possibility of production at scale, and this will offer a fast detection method for a range of applications with promising economic viability. The development of this technology has advanced to now warrant a descriptive model that …


Multiplexed Optofluidics For Single-Molecule Analysis, Matthew Alan Stott Apr 2018

Multiplexed Optofluidics For Single-Molecule Analysis, Matthew Alan Stott

Theses and Dissertations

The rapid development of optofluidics, the combination of microfluidics and integrated optics, since its formal conception in the early 2000's has aided in the advance of single-molecule analysis. The optofluidic platform discussed in this dissertation is called the liquid core anti-resonant reflecting optical waveguide (LC-ARROW). This platform uses ARROW waveguides to orthogonally intersect a liquid core waveguide with solid core rib waveguides for the excitation of specifically labeled molecules and collection of fluorescence signal. Since conception, the LC-ARROW platform has demonstrated its effectiveness as a lab-on-a-chip fluorescence biosensor. However, until the addition of optical multiplexing excitation waveguides, the platform lacked …


3d Printed High Density, Reversible, Chip-To-Chip Microfluidic Interconnects, Hua Gong, Adam T. Woolley, Gregory P. Nordin Feb 2018

3d Printed High Density, Reversible, Chip-To-Chip Microfluidic Interconnects, Hua Gong, Adam T. Woolley, Gregory P. Nordin

Faculty Publications

Our latest developments in miniaturizing 3D printed microfluidics [Gong et al., Lab Chip, 2016, 16, 2450; Gong et al., Lab Chip, 2017, 17, 2899] offer the opportunity to fabricate highly integrated chips that measure only a few mm on a side. For such small chips, an interconnection method is needed to provide the necessary world-to-chip reagent and pneumatic connections. In this paper, we introduce simple integrated microgaskets (SIMs) and controlled-compression integrated microgaskets (CCIMs) to connect a small device chip to a larger interface chip that implements world-to-chip connections. SIMs or CCIMs are directly 3D printed as part of the device …


Improved Single Molecule Detection Platform Using A Buried Arrow Design, Thomas Allen Wall Sep 2017

Improved Single Molecule Detection Platform Using A Buried Arrow Design, Thomas Allen Wall

Theses and Dissertations

As the microelectronics industry pushes microfabrication processes further, the lab-on-a-chip field has continued to piggy-back off the industry's fabrication capabilities with the goal of producing total chemical and biological systems on small chip-size platforms. One important function of such systems is the ability to perform single molecule detection. There are currently many methods being researched for performing single molecule detection, both macro and micro in scale. This dissertation focuses on an optofluidic, lab-on-a-chip platform called the ARROW biosensor, which possesses several advantages over macro-scale single molecule detection platforms. These advantages include an amplification-free detection scheme, cheap parallel fabrication techniques, rapid …


Microfluidic Devices And Biosensors, Long-Fang Tsai Feb 2016

Microfluidic Devices And Biosensors, Long-Fang Tsai

Theses and Dissertations

My research broadly covers various important aspects of microfluidic devices and biosensors. Specifically, this dissertation reports: (1) a new and effective room temperature method of bonding polydimethylsiloxane (PDMS) microfluidics to substrates such as silicon and glass, (2) a new microfluidic pump concept and implementation specifically designed to repeatedly drive a small sample volume (<1 µL) very rapidly (~500 µL/min) through a sensor-containing flow channel to significantly decrease sensor response time through advection-driven rather than diffusion-driven mass transport, (3) use of a new microfluidic material based on polyethylene glycol diacrylate (PEGDA) to implement impedance-based dynamic nanochannel sensors for protein sensing, and (4) an investigation of galvanoluminescence and how to avoid it for conditions important to fluorescence-based dielectrophoresis (DEP) microfluidic biosensors. Over the last decade, the Nordin research group has developed a lab-on-a-chip (LOC) biosensor based on silicon photonic microcantilever arrays integrated with polydimethylsiloxane (PDMS) microfluidics for protein biomarker detection. Integration requires reliable bonding at room temperature with adequate bond strength between the PDMS element and microcantilever sensor substrate. The requirement for a room temperature process is particularly critical because microcantilevers must be individually functionalized with antibody-based receptor molecules prior to bonding and cannot withstand significant heating after functionalization. I developed a new room temperature bonding method using PDMS curing agent as an intermediate adhesive layer. Two curing agents (Sylgard 184 and 182) were compared, as well as an alternate UV curable adhesive (NOA 75). The bond strength of Sylgard 184 was found to be stronger than Sylgard 182 under the same curing conditions. Overnight room temperature curing with Sylgard 184 yields an average burst pressure of 433 kPa, which is more than adequate for many PDMS sensor devices. In contrast, UV curable epoxy required a 12 hour bake at 50 °C to achieve maximum bond strength, which resulted in a burst pressure of only 124 kPa. In many biosensing scenarios it is desirable to use a small sample volume (<1 µL) to detect small analyte concentrations in as short a time as possible. I report a new microfluidic pump to address this need, which we call a reflow pump. It is designed to rapidly pump a small sample volume back and forth in a flow channel. Ultimately, the flow channel would contain functionalized sensor surfaces. The rapid flow permits use of advection-driven mass transport to the sensor surfaces to dramatically reduce sensor response times compared to diffusion-based mass transport. Normally such rapid flow would have the effect of decreasing the fraction of analyte molecules in the volume that would see the sensor surfaces. By configuring the pump to reflow fluid back and forth in the flow channel, the analyte molecules in the small sample volume are used efficiently in that they have many opportunities to make it to the sensor surfaces. I describe a 3-layer PDMS reflow pump that pumps 300 nL of fluid at 500 µL/min for 15 psi actuation pressure, and demonstrate a new two-layer configuration that significantly simplifies pump fabrication. Impedance-based nanochannel sensors operate on the basis of capturing target molecules in nanochannels such that impedance through the nanochannels is increased. While simple in concept, the response time can be quite long (8~12 hours) because the achievable flow rate through a nanochannel is very limited. An approach to dramatically increase the flow rate is to form nanochannels only during impedance measurements, and otherwise have an array of nanotrenches on the surface of a conventional microfluidic flow channel where they are exposed to normal microfluidic flow rates. I have implemented such a dynamic nanochannel approach with a recently-developed microfluidic material based polyethylene glycol diacrylate (PEGDA). I present the design, fabrication, and testing of PEGDA dynamic nanochannel array sensors, and demonstrate an 11.2 % increase in nanochannel impedance when exposed to 7.2 µM bovine serum albumin (BSA) in phosphate buffered saline (PBS). Recently, LOC biosensors for cancer cell detection have been demonstrated based on a combination of dielectrophoresis (DEP) and fluorescence detection. For fluorescence detection it is critical to minimize other sources of light in the system. However, reported devices use a non-noble metal electrode, indium tin oxide (ITO), to take advantage of its optical transparency. Unfortunately, use of non-noble metal electrodes can result in galvanoluminescence (GL) in which the AC voltage applied to the electrodes to achieve DEP causes light emission, which can potentially confound the fluorescence measurement. I designed and fabricated two types of devices to examine and identify conditions that lead to GL. Based on my observations, I have developed a method to avoid GL that involves measuring the impedance spectrum of a DEP device and choosing an operating frequency in the resistive portion of the spectrum. I also measure the emission spectrum of twelve salt solutions, all of which exhibited broadband GL. Finally, I show that in addition to Au, Cr and Ni do not exhibit GL, are therefore potentially attractive as low cost DEP electrode materials.


Optical Approach To Resin Formulation For 3d Printed Microfluidics, Hua Gong, Michael Beauchamp, Steven Perry, Adam T. Woolley, Gregory P. Nordin Dec 2015

Optical Approach To Resin Formulation For 3d Printed Microfluidics, Hua Gong, Michael Beauchamp, Steven Perry, Adam T. Woolley, Gregory P. Nordin

Faculty Publications

Microfluidics imposes different requirements on 3D printing compared to many applications because the critical features for microfluidics consist of internal microvoids. Resins for general 3D printing applications, however, are not necessarily formulated to meet the requirements of microfluidics and minimize the size of fabricated voids. In this paper we use an optical approach to guide custom formulation of resins to minimize the cross sectional size of fabricated flow channels as exemplars of such voids. We focus on stereolithgraphy (SL) 3D printing with Digital Light Processing (DLP) based on a micromirror array and use a commercially available 3D printer. We develop …


Polyethylene Glycol Diacrylate (Pegda) Resin Development For 3d-Printed Microfluidic Devices, Kamran Qaderi May 2015

Polyethylene Glycol Diacrylate (Pegda) Resin Development For 3d-Printed Microfluidic Devices, Kamran Qaderi

Theses and Dissertations

In this thesis, the successful fabrication of 3D-printed microfluidic devices will be discussed. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer utilizing a custom PEGDA resin formulation tailored for low non-specific protein adsorption based on my colleagues' work [Rogers et al., Anal. Chem. 83, 6418 (2011)]. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 300 um wide and 150 um tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 300 um designed (334 um actual) diameters. Moreover, two different resins developed by our group are utilized in the process …


Signal-To-Noise Measurements And Particle Focusing In Liquid-Core Waveguides, Michael A. Olson May 2014

Signal-To-Noise Measurements And Particle Focusing In Liquid-Core Waveguides, Michael A. Olson

Theses and Dissertations

This thesis presents an analysis of the signal-to-noise ratio in liquid core anti-resonant reflecting optical waveguides (ARROWs) and the application of hydrodynamic focusing to the waveguides. These concepts are presented as a method to improve the detection capabilities of the ARROW platform. The improvements are specifically targeted at achieving single molecule detection (SMD) with the devices. To analyze the SNR of the waveguides a test platform was designed and fabricated. This test platform was then used to examine relationship between the SNR and the location of the excitation region. It was determined that the excitation region should be moved closer …


Liquid Core Waveguide Sensors With Single And Multi-Spot Excitation, Lynnell Uilani Wai Yee Zempoaltecatl Dec 2013

Liquid Core Waveguide Sensors With Single And Multi-Spot Excitation, Lynnell Uilani Wai Yee Zempoaltecatl

Theses and Dissertations

Using silicon based microfabrication and materials, a photonic platform, capable of single bioparticle analysis, has been developed. This platform combines liquid and hollow core waveguides on the micron-scale (5 µm x 12 µm) to isolate femtoliter sized sample volumes. Fluorescence excitation and signals in the visible range are directed into and out of the sample volume at an orthogonal angle to maximize signal-to-noise. In order to guide light in a low-index material antiresonant reflecting optical waveguides (ARROWs) were incorporated into the platform. This thesis reveals the development path of these structures over several device generations including innovations in material, geometries, …


Characterization And Preliminary Demonstration Of Microcantilever Array Integrated Sensors, Ryan R. Anderson Jul 2012

Characterization And Preliminary Demonstration Of Microcantilever Array Integrated Sensors, Ryan R. Anderson

Theses and Dissertations

I characterize the behavior of microcantilever arrays which utilize the in-plane photonic transduction that I've previously developed and evaluate the performance of the microcantilever arrays in simple sensing scenarios with integrated microfluidics. First the thermal responses of microcantilevers with a variety of patterns of deposited gold films are compared. Using a scanning electron microscope, I observe the deflection thermal sensitivities of 300 µm long microcantilevers to be -170.82 nm/K for a full gold coating and -1.93 nm/K for no gold coating. Using the photonic transduction method I measure a thermal sensitivity of -1.46 nm/K for a microcantilever array with no …


Bonding Of Polydimethylsiloxane Microfluidics To Silicon-Based Sensors, Long-Fang Tsai, William C. Dahlquist, Seunghyun Kim, Gregory P. Nordin Nov 2011

Bonding Of Polydimethylsiloxane Microfluidics To Silicon-Based Sensors, Long-Fang Tsai, William C. Dahlquist, Seunghyun Kim, Gregory P. Nordin

Faculty Publications

We investigate bonding polydimethylsiloxane (PDMS) to silicon using a thin (~2μm) intermediate adhesive layer stamped onto a PDMS piece prior to bonding. In particular, we compare as adhesive layers Sylgard 184 and 182 curing agents and a UV curable adhesive (NOA 75). We examine the effect of both curing temperature and duration on curing agent bond strength. Bond strengths for the different adhesives are determined by measuring the average burst pressure at a PDMS-silicon interface using a PDMS test design. We find that Sylgard 184 curing agent gives the highest bond strength with burst pressure of 700 kPa or more …


Tailoring The Spectral Transmission Of Optofluidic Waveguides, Brian S. Phillips Aug 2011

Tailoring The Spectral Transmission Of Optofluidic Waveguides, Brian S. Phillips

Theses and Dissertations

Optofluidics is a relatively new and exciting field that includes the integration of optical waveguides into microfluidic platforms. The purpose of this field of study is to miniaturize previously developed optical systems used for biological and chemical analysis with the end goal of placing bench-top optics into microscopic packages. Mundane optical alignment and sample manipulation procedures would then be intrinsic to the platform and allow measurements to be completed quickly and with reduced human interaction. Biosensors based on AntiResonant Reflecting Optical Waveguides (ARROWs) consist of hollow-core waveguides used for fluid sample manipulation and analysis, as well as solid-core waveguides used …


Fabrication Of Hollow Optical Waveguides On Planar Substrates, John P. Barber Oct 2006

Fabrication Of Hollow Optical Waveguides On Planar Substrates, John P. Barber

Theses and Dissertations

This dissertation presents the fabrication of hollow optical waveguides integrated on planar substrates. Similar in principle to Bragg waveguides and other photonic crystal waveguides, the antiresonant reflecting optical waveguide (ARROW) is used to guide light in hollow cores filled with liquids or gases. Waveguides with liquid or gas cores are an important new building block for integrated optical sensors. The fabrication method developed for hollow ARROW waveguides makes use of standard microfabrication processes and materials. Dielectric layers are deposited on a silicon wafer using plasma-enhanced chemical vapor deposition (PECVD) to form the bottom layers of the ARROW waveguide. A sacrificial …