Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

External Link

Thin films

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Applications Of High Throughput Screening Tools For Thermoelectric Materials, W. Wong-Ng, H. Joress, J. Martin, Y. Yan, M. Otani, E. Thomas, M. Green, Jason Hattrick-Simpers Mar 2015

Applications Of High Throughput Screening Tools For Thermoelectric Materials, W. Wong-Ng, H. Joress, J. Martin, Y. Yan, M. Otani, E. Thomas, M. Green, Jason Hattrick-Simpers

Jason R. Hattrick-Simpers

No abstract provided.


Microwave Dielectric Properties Of Epitaxial Mn-Doped Ba(Zr,Ti)O-3 Thin Films On Laalo3 Substrates, Ming Liu, Chunrui Ma, Jian Liu, Gregory Collins, Chonglin Chen, Andy Alemayehu, Guru Subramanyam, Chao Dai, Yuan Lin, Amar Bhalla Mar 2015

Microwave Dielectric Properties Of Epitaxial Mn-Doped Ba(Zr,Ti)O-3 Thin Films On Laalo3 Substrates, Ming Liu, Chunrui Ma, Jian Liu, Gregory Collins, Chonglin Chen, Andy Alemayehu, Guru Subramanyam, Chao Dai, Yuan Lin, Amar Bhalla

Guru Subramanyam

Environmental friendly ferroelectric relaxor Ba(Zr0.2Ti0.8)O3 thin films with an additional 2% Mn dopant were epitaxially fabricated on the (001) LaAlO3 single crystal substrates by pulsed laser deposition. Microstructure characterizations from x-ray diffraction suggest that the films are c-axis oriented with the interface relationship of [101]Mn:BZT//[100]LAO and (001)Mn:BZT //(001)LAO. The microwave dielectric property measurements (13–17.5 GHz) reveal that the films have excellent dielectric properties with large tunability, high dielectric constant, and low dielectric loss, which the average value is 25.9%, 169 and 0.054, respectively. It is indicated that the additional 2% Mn doped Ba(Zr0.2Ti0.8)O3 thin films can be used for the …


Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Yoon, Tomokuza Sakai, Anton Geiler, Aria Yang, Yongxue He, Katherine Ziemer, Nian Sun, C. Vittoria Apr 2012

Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Yoon, Tomokuza Sakai, Anton Geiler, Aria Yang, Yongxue He, Katherine Ziemer, Nian Sun, C. Vittoria

Nian X. Sun

Next generation magnetic microwave devices require ferrite films to be thick (>300 μm), self-biased (high remanent magnetization), and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite (M-type) films using pulsed laser deposition (PLD), liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.