Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Hydrological Monitoring With Hybrid Sensor Networks, Thomas V. Freiberger, Sahra Sedigh, Estella A. Atekwana Oct 2007

Hydrological Monitoring With Hybrid Sensor Networks, Thomas V. Freiberger, Sahra Sedigh, Estella A. Atekwana

Electrical and Computer Engineering Faculty Research & Creative Works

Existing hydrological monitoring systems suffer from short- comings in accuracy, resolution, and scalability. Their fragility, high power consumption, and lack of autonomy necessitate frequent site visits. Cabling requirements and large size limit their scalability and make them prohibitively expensive. The research described in this paper proposes to alleviate these problems by pairing high-resolution in situ measure- ment with remote data collection and software maintenance. A hybrid sensor network composed of wired and wireless connections autonomously measures various attributes of the soil, including moisture, temperature, and resistivity. The mea- surements are communicated to a processing server over the existing GSM cellular …


Percussive Penetration Of Unconsolidated Granular Media In A Laboratory Setting, Leslie S. Gertsch Feb 2007

Percussive Penetration Of Unconsolidated Granular Media In A Laboratory Setting, Leslie S. Gertsch

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

This controlled study examined the feasibility of a simple percussive approach to drilling through unconsolidated regolith deposits on Mars. The experiments showed that the approach is feasible at the low power levels and low confining pressures used, and that the rate of impact is more important to the penetration rate than is the mass of the impactor (hammer). More massive impactors tend to lower energy efficiency, as they do in terrestrial pile-driving. Unexpectedly, penetration plotted against applied energy tends to cluster into parallel linear trends. Within a given cluster, penetration is very sensitive to applied energy, while between clusters, the …