Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin Dec 2023

Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin

All Theses

Optically stimulated luminescence (OSL) dosimetry was utilized to calibrate Al2O3:C powder dosimeters, available commercially as the nanoDot® from Landauer Inc., and compare the dosimeter response to radium-226 (226Ra) and cesium-137 (137Cs). The signal from the OSL was quantified using a microSTARii® OSL reader also produced by Landauer Inc. Dose-response curves were developed for 226Ra and 137Cs experiments (5 dosimeters each) at thirteen absorbed doses. Individual dosimeter response was tracked by serial number. Linear regression analysis was performed to determine if there were significant differences between the intercepts of the …


High-Energy Storm Events And Their Impacts On Carbon Storage In Tidal Wetlands Of South Carolina, Gavin Gleasman Aug 2023

High-Energy Storm Events And Their Impacts On Carbon Storage In Tidal Wetlands Of South Carolina, Gavin Gleasman

All Dissertations

Atmospheric carbon dioxide (CO2) concentrations have been increasing at an accelerating rate for the past two centuries, profoundly impacting global climate change. Atmospheric CO2 concentrations are influenced by the global carbon cycle through physical and biogeochemical pathways. Tidal wetland environments play a vital role in the global carbon cycle by offsetting atmospheric CO2 concentrations through their natural physiochemical processes of high autotrophic productivity, allochthonous organic matter deposition, anoxic soils, and continuous accretion which promotes carbon sequestration with long-term storage at the land-ocean margin. The Intergovernmental Panel on Climate Change (IPCC) and United States Global Change Research …


Evaluating The Feasibility Of Using Strain Measured During Sinusoidal Rate Pumping Tests To Characterize An Aquifer, Riley Blais Aug 2023

Evaluating The Feasibility Of Using Strain Measured During Sinusoidal Rate Pumping Tests To Characterize An Aquifer, Riley Blais

All Theses

Pumping tests with sinusoidal variation in pumping rate have been proposed as a method for improving aquifer characterization. These tests can interrogate a larger aquifer volume than slug tests and they can be more sensitive to small variations in drawdown. Current methods of using sinusoidal variations of rate are based on measuring pressure signals from the reservoir or aquifer, which requires access to monitoring wells. An alternative approach has been developed that measures the strain in the vadose zone instead of pressure in the reservoir. An instrument has been developed at Clemson University that can measure small strains using optical …


Impacts Of Preferential Flow On Tc-99and Np-237 Vadose Transport In Soils At The Savannah River Site, Josh Parris May 2023

Impacts Of Preferential Flow On Tc-99and Np-237 Vadose Transport In Soils At The Savannah River Site, Josh Parris

All Theses

Since the 1950s, the United States has produced approximately 90,000 metric tons of spent nuclear fuel (SNF) (Office of Nuclear Energy, 2022); however, no long-term storage solutions are available. Technecium-99 and neptunium-237, two fission products found in SNF, readily form highly mobile species in oxidizing conditions (Hu, 2008; Bondietti, 1979) and have respective half-lives of 2.13 x 105 and 2.14 x106 years (Hu, 2010). Considering these characteristics, 99Tc and 237Np are two risk-driving isotopes found in SNF storage. The process of macropore-facilitated preferential flow, transport through cracks within a soil matrix, has been recognized to increase …


Explaining Spatio-Temporal Evolution Of Extreme Hydro-Climatic Events Using A Complex Network Framework, Somnath Mondal May 2023

Explaining Spatio-Temporal Evolution Of Extreme Hydro-Climatic Events Using A Complex Network Framework, Somnath Mondal

All Dissertations

Severe hydroclimatic extreme events, such as droughts, heatwaves, and heavy rainfall, are occurring with increasing frequency and causing significant impacts on both people and the environment. These events also compound in space and time, leading to even more significant consequences. Therefore, it is essential to comprehend these phenomena' concurrent and time-delayed progression across different temporal and spatial scales to address adaptation and mitigation effectively. To accurately understand and map the co-evolution of extreme events, it's necessary to have a thorough grasp of their spatiotemporal patterns, how they propagate and interact with one another, and the underlying mechanisms driving their occurrence. …


Ligand-Promoted Dissolution Of Uranyl Phosphate Across Scales, Brennan Ferguson Dec 2022

Ligand-Promoted Dissolution Of Uranyl Phosphate Across Scales, Brennan Ferguson

All Dissertations

The formation of uranyl phosphate precipitate is a remediation strategy because the low solubility of uranyl phosphate minerals, like chernikovite, limits the mobility of uranium in contaminated soils. However, organic ligands can complex with aqueous metal cations to form more soluble species. For example, citrate is a commonly occurring organic ligand produced by plants and microbes that increases the solubility of uranium and therefore the dissolution of uranyl phosphate minerals in the uranyl phosphate-citrate system. This effect is an important control on the mobility of uranium in organic-rich, and near-surface vegetated environments. Nevertheless, key aspects of the citrate-uranyl phosphate system …


Geology-Based Shear-Wave Velocity Model Of Reference Site Conditions In South Carolina For Seismic Site Response Analysis, Camilius Amevorku Nov 2022

Geology-Based Shear-Wave Velocity Model Of Reference Site Conditions In South Carolina For Seismic Site Response Analysis, Camilius Amevorku

All Dissertations

Assessing earthquake hazard in the State of South Carolina is important because it is one of the most seismically active regions of the eastern United States and has experienced earthquakes of damaging levels in the historical past. Examples of these damaging seismic events are the 1886 Charleston earthquake (M 6.7 to 7.5) and the 1913 Union County earthquake (M 4.5 to 5.5).

Small-strain shear-wave velocity (VS) is an important parameter in performing site response analysis. The deep nature of the top of reference firm rock (i.e., VS ≥ 760 m/s or B-C boundary) due to …


Application Of A 14c-Assay To Assess Methanotrophic Biodegradation Of Tce In Low Ph Groundwater, Evan Groome Aug 2022

Application Of A 14c-Assay To Assess Methanotrophic Biodegradation Of Tce In Low Ph Groundwater, Evan Groome

All Theses

Current biological strategies for remediating trichloroethylene (TCE) in low pH aquifers (i.e., pH14C-TCE assay was developed to determine pseudo first-order rate constants for the degradation of TCE in microcosms containing soil and groundwater from the Boeing Michigan Aeronautical Research Center (BOMARC) superfund site, where the pH ranges from 4.1 to 4.9. The 14C-TCE assay was also adapted to calculate soil-normalized rate constants for data from this site, as well as data that Szwast21 collected from the Beltsville Agricultural Research Center (BARC). In addition to natural attenuation, biostimulation through amendments of methane and nutrients were also assessed. This treatment …


Characterization Of Water Flow And Solute Transport Driven By Preferential Flow In Soil Vadose Zone, Abdullah Al Mamun May 2022

Characterization Of Water Flow And Solute Transport Driven By Preferential Flow In Soil Vadose Zone, Abdullah Al Mamun

All Dissertations

The vadose zone acts as a buffer zone between the ground surface and the aquifers underneath and controls the transmission of infiltrating water and contaminants, for example, pesticides and chemical spills. Therefore, understanding the flow and transport processes that dominate the vadose zone is important. Macropores are ubiquitous and particularly found in abundance in the vadose zone. These macropores facilitate preferential flow, through which water travels rapidly deep into the soil, bypassing most of the porous matrix. Preferential flow and transport have environmental significance as their processes impact hydrology, ecology, agriculture, subsurface contamination, and waste management sectors. Thus, the overall …


Wetland Uranium Transport Via Iron-Organic Matter Flocs And Hyporheic Exchange, Connor J. Parker May 2022

Wetland Uranium Transport Via Iron-Organic Matter Flocs And Hyporheic Exchange, Connor J. Parker

All Dissertations

Uranium (U) released from the M-Area at the Department of Energy Savannah River Site into Tims Branch, a seasonal wetland and braided stream system, is estimated to be 43,500 kg between 1965 and 1984. The motivation for this work is the uranium’s persistence in the wetland for decades, where it is estimated that 80% of the U currently remains in the Tims Branch wetland. U has begun to incorporate into wetland iron (Fe) and carbon cycles, associating with local Fe mineralogy and deposits of rich wetland organic matter (OM). The objective of this work is to characterize the chemical phases …


Fate And Transport Of Toxoplasma Gondii Oocysts In Saturated Porous Media: Effects Of Electrolytes And Natural Organic Matter, Christian Pullano May 2022

Fate And Transport Of Toxoplasma Gondii Oocysts In Saturated Porous Media: Effects Of Electrolytes And Natural Organic Matter, Christian Pullano

All Theses

Toxoplasma gondii is a pathogenic microorganism that is currently a threat to public health. Understanding the fate and transport of T. gondii through the soil and groundwater is vital in determining the risk it poses to water resources and human health. The physico-chemical interactions between the groundwater and the bio colloid within an aquifer will dictate its mobility and its ability to infect humans. This research examines how various naturally occurring groundwater chemistries containing organic compounds and monovalent and divalent salt solutions will alter the fate and transport of T. gondii. Solutions containing various concentrations of humic acid, fulvic …


Toward Understanding The Thermodynamics And Mechanisms Of Actinide Sorption Reactions, Shanna Estes Dec 2014

Toward Understanding The Thermodynamics And Mechanisms Of Actinide Sorption Reactions, Shanna Estes

All Dissertations

The environmental fate of actinides is greatly influenced by interfacial reactions, including sorption onto solid surfaces. Because changes in the primary hydration sphere of the actinide are expected to greatly influence the thermodynamics (i.e., reaction enthalpy and entropy) of these reactions, examining actinide sorption thermodynamics may provide insight into actinide sorption mechanisms. Additionally, examining actinide sorption thermodynamics may enhance the ability to model or predict these reactions in environmental or engineered systems where variable or elevated temperatures are expected. However, few researchers have studied actinide sorption thermodynamics. Therefore, this research examined the thermodynamics of Eu(III) (a trivalent actinide analog), Th(IV), …


Transformation Of Uranium In A Geological Environment, Derrell Hood Dec 2014

Transformation Of Uranium In A Geological Environment, Derrell Hood

All Theses

Incorporation of uranium into iron oxide minerals is a promising mechanism for the environmental immobilization of U(VI). In this study, synthesized hematite was doped with uranium and analyzed with SEM-EDS, TEM, XRD, and ICP-MS. The results of this analysis strongly indicate uranium incorporation into the mineral, as well as the possible presence of a co-precipitated uranium mineral clarkeite. Preliminary results also shows an increase in the amount of uranium associated with the hematite particles as a function of mineral aging. Cyclic Voltammetry (CV) was used to induce and characterize electrochemical changes of uranium in the doped hematite system; these changes …


An Examination Of Radionuclide Transport In The Vadose Zone Using Field Lysimeters, Michael Witmer Aug 2014

An Examination Of Radionuclide Transport In The Vadose Zone Using Field Lysimeters, Michael Witmer

All Theses

Understanding how radionuclides interact in the subsurface is important for the remediation of contaminated sites, assessment of risk due to radioactive waste disposal, and designing new radioactive waste management strategies. The current understanding of the geochemical behavior of radionuclides in the subsurface and more specifically the vadose zone has been developed through reactive transport modeling supplemented by laboratory experiments. Interactions between radionuclides with the mineral particles and organic matter in the vadose zone can be very complex and while laboratory experiments produce valuable data, few controlled, intermediate scale transport studies have been performed. In order to accurately predict vadose zone …


Design Of A High Temperature Subsurface Thermal Energy Storage System, Qi Zheng May 2014

Design Of A High Temperature Subsurface Thermal Energy Storage System, Qi Zheng

All Theses

Solar thermal energy is taking up increasing proportions of future power generation worldwide. Thermal energy storage technology is a key method for compensating for the inherent intermittency of solar resources and solving the time mismatch between solar energy supply and electricity demand. However, there is currently no cost-effective high-capacity compact storage technology available (Bakker et al., 2008). The goal of this work is to propose a high temperature subsurface thermal energy storage (HSTES) technology and demonstrate its potential energy storage capability by developing a solar-HSTES-electricity generation system. In this work, main elements of the proposed system and their related state-of-art …