Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Digital Simulations Of Memristors Towards Integration With Reconfigurable Computing, Ivris Raymond May 2023

Digital Simulations Of Memristors Towards Integration With Reconfigurable Computing, Ivris Raymond

Computer Science and Computer Engineering Undergraduate Honors Theses

The end of Moore’s Law has been predicted for decades. Demand for increased parallel computational performance has been increased by improvements in machine learning. This past decade has demonstrated the ever-increasing creativity and effort necessary to extract scaling improvements in CMOS fabrication processes. However, CMOS scaling is nearing its fundamental physical limits. A viable path for increasing performance is to break the von Neumann bottleneck. In-memory computing using emerging memory technologies (e.g. ReRam, STT, MRAM) offers a potential path beyond the end of Moore’s Law. However, there is currently very little support from industry tools for designers wishing to incorporate …


Analyzing Microarchitectural Residue In Various Privilege Strata To Identify Computing Tasks, Tor J. Langehaug Sep 2022

Analyzing Microarchitectural Residue In Various Privilege Strata To Identify Computing Tasks, Tor J. Langehaug

Theses and Dissertations

Modern multi-tasking computer systems run numerous applications simultaneously. These applications must share hardware resources including the Central Processing Unit (CPU) and memory while maximizing each application’s performance. Tasks executing in this shared environment leave residue which should not reveal information. This dissertation applies machine learning and statistical analysis to evaluate task residue as footprints which can be correlated to identify tasks. The concept of privilege strata, drawn from an analogy with physical geology, organizes the investigation into the User, Operating System, and Hardware privilege strata. In the User Stratum, an adversary perspective is taken to build an interrogator program that …


Otter Vector Extension, Alexis A. Peralta Jun 2020

Otter Vector Extension, Alexis A. Peralta

Computer Engineering

This paper offers an implementation of a subset of the "RISC-V 'V' Vector Extension", v0.7.x. The "RISC-V 'V' Vector Extension" is the proposed vector instruction set for RISC-V open-source architecture. Vectors are inherently data-parallel, allowing for significant performance increases. Vectors have applications in fields such as cryptography, graphics, and machine learning. A vector processing unit was added to Cal Poly's RISC-V multi-cycle architecture, known as the OTTER. Computationally intensive programs running on the OTTER Vector Extension ran over three times faster when compared to the baseline multi-cycle implementation. Memory intensive applications saw similar performance increases.


On High-Performance Parallel Fixed-Point Decimal Multiplier Designs, Ming Zhu Dec 2013

On High-Performance Parallel Fixed-Point Decimal Multiplier Designs, Ming Zhu

UNLV Theses, Dissertations, Professional Papers, and Capstones

High-performance, area-efficient hardware implementation of decimal multiplication is preferred to slow software simulations in a number of key scientific and financial application areas, where errors caused by converting decimal numbers into their approximate binary representations are not acceptable.

Multi-digit parallel decimal multipliers involve two major stages: (i) the partial product generation (PPG) stage, where decimal partial products are determined by selecting the right versions of the pre-computed multiples of the multiplicand, followed by (ii) the partial product accumulation (PPA) stage, where all the partial products are shifted and then added together to obtain the final multiplication product. In this thesis, …


Tailored Systems Architecture For Design Of Space Science And Technology Missions Using Dodaf V2.0, Nicholas J. Merski Dec 2009

Tailored Systems Architecture For Design Of Space Science And Technology Missions Using Dodaf V2.0, Nicholas J. Merski

Theses and Dissertations

The use of systems architecture, following a set of integrated descriptions from an architecture framework, has been well codified in Department of Defense acquisition and systems engineering. However, in the Space Science and Technology (S&T) community, this guidance and practice is not commonly adopted. This paper outlines an approach to leverage the changes made in DoD Architecture Framework 2.0 (DoDAF2.0), and the renewed emphasis on data and support to acquisition decision analysis. After decomposing the Space S&T design lifecycle into phases, design milestones and activities using process models, a set of DoDAF prescribed and Fit-for-Purpose views are constructed into a …


Methodology For Value-Driven Enterprise Architecture Development Goals: Application To Dodaf Framework, Justin W. Osgood Mar 2009

Methodology For Value-Driven Enterprise Architecture Development Goals: Application To Dodaf Framework, Justin W. Osgood

Theses and Dissertations

The Department of Defense Architectural Framework (DoDAF) describes 29 distinct views but offers limited guidance on view selection to meet system needs. This research extends the Value-Driven Enterprise Architecture Score (VDEA-Score) from a descriptive, evaluation protocol toward a prescriptive one by evaluating each DoDAF view and its contribution to the overall objective of the completed architecture. This extension of VDEA is referred to as VDEA-Development Goals (VDEA-DG). The program manager or other decision-makers may use this insight to justify the allocation of resources to the development of specific architecture views considered to provide maximum value. This research provides insight into …


Dynamic Task Prediction For An Spmt Architecture Based On Control Independence, Komal Jothi Jan 2009

Dynamic Task Prediction For An Spmt Architecture Based On Control Independence, Komal Jothi

Dissertations and Theses

Exploiting better performance from computer programs translates to finding more instructions to execute in parallel. Since most general purpose programs are written in an imperatively sequential manner, closely lying instructions are always data dependent, making the designer look far ahead into the program for parallelism. This necessitates wider superscalar processors with larger instruction windows. But superscalars suffer from three key limitations, their inability to scale, sequential fetch bottleneck and high branch misprediction penalty. Recent studies indicate that current superscalars have reached the end of the road and designers will have to look for newer ideas to build computer processors.

Speculative …


Exploring Hardware Based Primitives To Enhance Parallel Security Monitoring In A Novel Computing Architecture, Stephen D. Mott Mar 2007

Exploring Hardware Based Primitives To Enhance Parallel Security Monitoring In A Novel Computing Architecture, Stephen D. Mott

Theses and Dissertations

This research explores how hardware-based primitives can be implemented to perform security-related monitoring in real-time, offer better security, and increase performance compared to software-based approaches. In doing this, we propose a novel computing architecture, derived from a contemporary shared memory architecture, that facilitates efficient security-related monitoring in real-time, while keeping the monitoring hardware itself safe from attack. This architecture is flexible, allowing security to be tailored based on the needs of the system. We have developed a number of hardware-based primitives that fit into this architecture to provide a wide array of monitoring capabilities. A number of these primitives provide …


Fault And Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices, George R. Roelke Iv Sep 2006

Fault And Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices, George R. Roelke Iv

Theses and Dissertations

This research addresses design of a reliable computer from unreliable device technologies. A system architecture is developed for a "fault and defect tolerant" (FDT) computer. Trade-offs between different techniques are studied and yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device failure probabilities of 3 x 10(-6), three orders of magnitude better than non fault tolerant caches of the same size. The entire processor achieves 70% yield with device failure probabilities exceeding 10(-6). The required …


A Reconfigurable Superscalar Architecture, Christopher B. Mayer Dec 1997

A Reconfigurable Superscalar Architecture, Christopher B. Mayer

Theses and Dissertations

The invention of the Field Programmable Gate Array (FPGA) has led to a number of interesting developments. One is the idea of providing custom hardware support for applications running on a computer. These reconfigurable computers have been shown to decrease the execution time for some applications. Based on past results, attention has subsequently turned to using reconfigurable computing in general-purpose computers (e.g. desktop and workstation environments). This thesis develops a design for just such a computer. The design, FPGADLX, is based on a hypothetical superscalar computer running the DLX instruction set and is generic enough in principle to be adapted …


Design And Implementation Of High-Radix Arithmetic Systems Based On The Sdnr/Rns Data Representation, Paul Whyte Jan 1997

Design And Implementation Of High-Radix Arithmetic Systems Based On The Sdnr/Rns Data Representation, Paul Whyte

Theses : Honours

This project involved the design and implementation of high-radix arithmetic systems based on the hybrid SDNRIRNS data representation. Some real-time applications require a real-time arithmetic system. An SDNR/RNS arithmetic system provides parallel, real-time processing. The advantages and disadvantages of high-radix SDNR/RNS arithmetic, and the feasibility of implementing SDNR/RNS arithmetic systems in CMOS VLSI technology, were investigated in this project. A common methodological model, which included the stages of analysis, design, implementation, testing, and simulation, was followed. The combination of the SDNR and RNS transforms potential complex logic networks into simpler logic blocks. It was found that when constructing a SDNRIRNS …


Parallel Architectures For Solving Combinatorial Problems Of Logic Design, Phuong Minh Ho Jan 1989

Parallel Architectures For Solving Combinatorial Problems Of Logic Design, Phuong Minh Ho

Dissertations and Theses

This thesis presents a new, practical approach to solve various NP-hard combinatorial problems of logic synthesis, logic programming, graph theory and related areas. A problem to be solved is polynomially time reduced to one of several generic combinatorial problems which can be expressed in the form of the Generalized Propositional Formula (GPF) : a Boolean product of clauses, where each clause is a sum of products of negated or non-negated literals.