Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 49

Full-Text Articles in Engineering

Contrastive Learning For Unsupervised Auditory Texture Models, Christina Trexler Dec 2021

Contrastive Learning For Unsupervised Auditory Texture Models, Christina Trexler

Computer Science and Computer Engineering Undergraduate Honors Theses

Sounds with a high level of stationarity, also known as sound textures, have perceptually relevant features which can be captured by stimulus-computable models. This makes texture-like sounds, such as those made by rain, wind, and fire, an appealing test case for understanding the underlying mechanisms of auditory recognition. Previous auditory texture models typically measured statistics from auditory filter bank representations, and the statistics they used were somewhat ad-hoc, hand-engineered through a process of trial and error. Here, we investigate whether a better auditory texture representation can be obtained via contrastive learning, taking advantage of the stationarity of auditory textures to …


Joint Linear And Nonlinear Computation With Data Encryption For Efficient Privacy-Preserving Deep Learning, Qiao Zhang Dec 2021

Joint Linear And Nonlinear Computation With Data Encryption For Efficient Privacy-Preserving Deep Learning, Qiao Zhang

Electrical & Computer Engineering Theses & Dissertations

Deep Learning (DL) has shown unrivalled performance in many applications such as image classification, speech recognition, anomalous detection, and business analytics. While end users and enterprises own enormous data, DL talents and computing power are mostly gathered in technology giants having cloud servers. Thus, data owners, i.e., the clients, are motivated to outsource their data, along with computationally-intensive tasks, to the server in order to leverage the server’s abundant computation resources and DL talents for developing cost-effective DL solutions. However, trust is required between the server and the client to finish the computation tasks (e.g., conducting inference for the newly-input …


Deep Learning Predicts Ebv Status In Gastric Cancer Based On Spatial Patterns Of Lymphocyte Infiltration, Baoyi Zhang, Kevin Yao, Min Xu, Jia Wu, Chao Cheng Nov 2021

Deep Learning Predicts Ebv Status In Gastric Cancer Based On Spatial Patterns Of Lymphocyte Infiltration, Baoyi Zhang, Kevin Yao, Min Xu, Jia Wu, Chao Cheng

Computer Vision Faculty Publications

EBV infection occurs in around 10% of gastric cancer cases and represents a distinct subtype, characterized by a unique mutation profile, hypermethylation, and overexpression of PD-L1. Moreover, EBV positive gastric cancer tends to have higher immune infiltration and a better prognosis. EBV infection status in gastric cancer is most commonly determined using PCR and in situ hybridization, but such a method requires good nucleic acid preservation. Detection of EBV status with histopathology images may complement PCR and in situ hybridization as a first step of EBV infection assessment. Here, we developed a deep learning-based algorithm to directly predict EBV infection …


Research On The Network Of 3d Smoke Flow Super-Resolution Data Generation, Jinlian Du, Shufei Li, Xueyun Jin Oct 2021

Research On The Network Of 3d Smoke Flow Super-Resolution Data Generation, Jinlian Du, Shufei Li, Xueyun Jin

Journal of System Simulation

Abstract: Aiming at the problem of low data generation efficiency due to the high complexity of solving the N-S equation of smoke flow field, a deep learning model which can generate high-resolution smoke flow data based on low-resolution smoke flow data solved by N-S equation is explored and designed. Based on the Generative Adversarial Network, the smoke data reconstruction network based on the sub voxel convolution layer is constructed. Considering the fluidity of smoke, time loss based on advection step is introduced into the loss function to realize high-precision smoke simulation. By extending the image super-resolution quality evaluation index, the …


Computer-Aided Diagnosis Of Low Grade Endometrial Stromal Sarcoma (Lgess), Xinxin Yang, Mark Stamp Sep 2021

Computer-Aided Diagnosis Of Low Grade Endometrial Stromal Sarcoma (Lgess), Xinxin Yang, Mark Stamp

Faculty Research, Scholarly, and Creative Activity

Low grade endometrial stromal sarcoma (LGESS) accounts for about 0.2% of all uterine cancer cases. Approximately 75% of LGESS patients are initially misdiagnosed with leiomyoma, which is a type of benign tumor, also known as fibroids. In this research, uterine tissue biopsy images of potential LGESS patients are preprocessed using segmentation and stain normalization algorithms. We then apply a variety of classic machine learning and advanced deep learning models to classify tissue images as either benign or cancerous. For the classic techniques considered, the highest classification accuracy we attain is about 0.85, while our best deep learning model achieves an …


Gradient Free Sign Activation Zero One Loss Neural Networks For Adversarially Robust Classification, Yunzhe Xue Aug 2021

Gradient Free Sign Activation Zero One Loss Neural Networks For Adversarially Robust Classification, Yunzhe Xue

Dissertations

The zero-one loss function is less sensitive to outliers than convex surrogate losses such as hinge and cross-entropy. However, as a non-convex function, it has a large number of local minima, andits undifferentiable attribute makes it impossible to use backpropagation, a method widely used in training current state-of-the-art neural networks. When zero-one loss is applied to deep neural networks, the entire training process becomes challenging. On the other hand, a massive non-unique solution probably also brings different decision boundaries when optimizing zero-one loss, making it possible to fight against transferable adversarial examples, which is a common weakness in deep learning …


Towards Adversarial Robustness With 01 Lossmodels, And Novel Convolutional Neural Netsystems For Ultrasound Images, Meiyan Xie Aug 2021

Towards Adversarial Robustness With 01 Lossmodels, And Novel Convolutional Neural Netsystems For Ultrasound Images, Meiyan Xie

Dissertations

This dissertation investigates adversarial robustness with 01 loss models and a novel convolutional neural net systems for vascular ultrasound images.

In the first part, the dissertation presents stochastic coordinate descent for 01 loss and its sensitivity to adversarial attacks. The study here suggests that 01 loss may be more resilient to adversarial attacks than the hinge loss and further work is required.

In the second part, this dissertation proposes sign activation network with a novel gradient-free stochastic coordinate descent algorithm and its ensembling model. The study here finds that the ensembling model gives a high minimum distortion (as measured by …


Step-Wise Deep Learning Models For Solving Routing Problems, Liang Xin, Wen Song, Zhiguang Cao, Jie Zhang Jul 2021

Step-Wise Deep Learning Models For Solving Routing Problems, Liang Xin, Wen Song, Zhiguang Cao, Jie Zhang

Research Collection School Of Computing and Information Systems

Routing problems are very important in intelligent transportation systems. Recently, a number of deep learning-based methods are proposed to automatically learn construction heuristics for solving routing problems. However, these methods do not completely follow Bellman's Principle of Optimality since the visited nodes during construction are still included in the following subtasks, resulting in suboptimal policies. In this article, we propose a novel step-wise scheme which explicitly removes the visited nodes in each node selection step. We apply this scheme to two representative deep models for routing problems, pointer network and transformer attention model (TAM), and significantly improve the performance of …


Research On Intrusion Detection Based On Stacked Autoencoder And Long-Short Memory, Lin Shuo, An Lei, Zhijun Gao, Shan Dan, Wenli Shang Jun 2021

Research On Intrusion Detection Based On Stacked Autoencoder And Long-Short Memory, Lin Shuo, An Lei, Zhijun Gao, Shan Dan, Wenli Shang

Journal of System Simulation

Abstract: As network attacks increasingly hidden, intelligent and complex. Simple machine learning cannot deal with attacks timely. A deep learning method based on the combination of SDAE and LSTM is proposed. Firstly, the distribution rules of network data are extracted intelligently layer by layer by SDAE, and the diverse anomaly features of high-dimensional data ate extracted by using coefficient penalty and reconstruction error of each coding layer. Then, LSTM’ s memory function and the powerful learning ability of sequence data are used to classify learning depth. Finally, the experiments are carried out with the UNSW-NB15 data set, which is analyzed …


Creating Synthetic Satellite Cloud Data Based On Gan Method, Wencong Cheng, Xiaokang Shi, Zhigang Wang Jun 2021

Creating Synthetic Satellite Cloud Data Based On Gan Method, Wencong Cheng, Xiaokang Shi, Zhigang Wang

Journal of System Simulation

Abstract: To create the synthetic satellite cloud data in the domain of Meteorology, a method based on Generative Adversarial Networks (GAN) is proposed. Depending on ability of the nonlinear mapping and the information extraction of raster data with the deep learning network, a deep generative adversarial network model is proposed to extract the corresponding information between the numerical weather prediction(NWP) products and the satellite cloud data, and then the appropriate elements of the NWP product are chosen as the input to synthesize the corresponding satellite cloud data. The experiments are conducted on the re-analysis products of the European Centre …


Flying Free: A Research Overview Of Deep Learning In Drone Navigation Autonomy, Thomas Lee, Susan Mckeever, Jane Courtney Jun 2021

Flying Free: A Research Overview Of Deep Learning In Drone Navigation Autonomy, Thomas Lee, Susan Mckeever, Jane Courtney

Articles

With the rise of Deep Learning approaches in computer vision applications, significant strides have been made towards vehicular autonomy. Research activity in autonomous drone navigation has increased rapidly in the past five years, and drones are moving fast towards the ultimate goal of near-complete autonomy. However, while much work in the area focuses on specific tasks in drone navigation, the contribution to the overall goal of autonomy is often not assessed, and a comprehensive overview is needed. In this work, a taxonomy of drone navigation autonomy is established by mapping the definitions of vehicular autonomy levels, as defined by the …


Development Of Deep Learning Neural Network For Ecological And Medical Images, Shaobo Liu May 2021

Development Of Deep Learning Neural Network For Ecological And Medical Images, Shaobo Liu

Dissertations

Deep learning in computer vision and image processing has attracted attentions from various fields including ecology and medical image. Ecologists are interested in finding an effective model structure to classify different species. Tradition deep learning model use a convolutional neural network, such as LeNet, AlexNet, VGG models, residual neural network, and inception models, are first used on classifying bee wing and butterfly datasets. However, insufficient data sample and unbalanced samples in each class have caused a poor accuracy. To make improvement the test accuracy, data augmentation and transfer learning are applied. Recently developed deep learning framework based on mathematical morphology …


Deep Learning On Image Forensics And Anti-Forensics, Zhangyi Shen May 2021

Deep Learning On Image Forensics And Anti-Forensics, Zhangyi Shen

Dissertations

Image forensics protect the authenticity and integrity of digital images. On the contrary, as the countermeasures of digital forensics, anti-forensics is applied to expose the vulnerability of forensics tools. Consequently, forensics researchers could develop forensics tools against possible new attacks. This dissertation investigation demonstrates two image forensics methods based on convolutional neural network (CNN) and two image anti-forensics methods based on generative adversarial network (GAN).

Detecting unsharp masking (USM) sharpened image is the first study in this dissertation. A CNN architecture comprises four convolutional layers and a classification module is proposed to discriminate sharpened images and unsharpened images. The results …


Wound Image Classification Using Deep Convolutional Neural Networks, Behrouz Rostami May 2021

Wound Image Classification Using Deep Convolutional Neural Networks, Behrouz Rostami

Theses and Dissertations

Artificial Intelligence (AI) includes subfields like Machine Learning (ML) and DeepLearning (DL) and discusses intelligent systems that mimic human behaviors. ML has been used in a wide range of fields. Particularly in the healthcare domain, medical images often need to be carefully processed via such operations as classification and segmentation. Unlike traditional ML methods, DL algorithms are based on deep neural networks that are trained on a large amount of labeled data to extract features without human intervention. DL algorithms have become popular and powerful in classifying and segmenting medical images in recent years. In this thesis, we shall study …


Improving Treatment Of Local Liver Ablation Therapy With Deep Learning And Biomechanical Modeling, Brian Anderson, Kristy Brock, Laurence Court, Carlos Eduardo Cardenas, Erik Cressman, Ankit Patel May 2021

Improving Treatment Of Local Liver Ablation Therapy With Deep Learning And Biomechanical Modeling, Brian Anderson, Kristy Brock, Laurence Court, Carlos Eduardo Cardenas, Erik Cressman, Ankit Patel

Dissertations & Theses (Open Access)

In the United States, colorectal cancer is the third most diagnosed cancer, and 60-70% of patients will develop liver metastasis. While surgical liver resection of metastasis is the standard of care for treatment with curative intent, it is only avai lable to about 20% of patients. For patients who are not surgical candidates, local percutaneous ablation therapy (PTA) has been shown to have a similar 5-year overall survival rate. However, PTA can be a challenging procedure, largely due to spatial uncertainties in the localization of the ablation probe, and in measuring the delivered ablation margin.

For this work, we hypothesized …


A Deep Learning-Based Automatic Object Detection Method For Autonomous Driving Ships, Ojonoka Erika Atawodi May 2021

A Deep Learning-Based Automatic Object Detection Method For Autonomous Driving Ships, Ojonoka Erika Atawodi

Master's Theses

An important feature of an Autonomous Surface Vehicles (ASV) is its capability of automatic object detection to avoid collisions, obstacles and navigate on their own.

Deep learning has made some significant headway in solving fundamental challenges associated with object detection and computer vision. With tremendous demand and advancement in the technologies associated with ASVs, a growing interest in applying deep learning techniques in handling challenges pertaining to autonomous ship driving has substantially increased over the years.

In this thesis, we study, design, and implement an object recognition framework that detects and recognizes objects found in the sea. We first curated …


Bibliometric Analysis Of Named Entity Recognition For Chemoinformatics And Biomedical Information Extraction Of Ovarian Cancer, Vijayshri Khedkar, Charlotte Fernandes, Devshi Desai, Mansi R, Gurunath Chavan Dr, Sonali Tidke Dr., M. Karthikeyan Dr. Apr 2021

Bibliometric Analysis Of Named Entity Recognition For Chemoinformatics And Biomedical Information Extraction Of Ovarian Cancer, Vijayshri Khedkar, Charlotte Fernandes, Devshi Desai, Mansi R, Gurunath Chavan Dr, Sonali Tidke Dr., M. Karthikeyan Dr.

Library Philosophy and Practice (e-journal)

With the massive amount of data that has been generated in the form of unstructured text documents, Biomedical Named Entity Recognition (BioNER) is becoming increasingly important in the field of biomedical research. Since currently there does not exist any automatic archiving of the obtained results, a lot of this information remains hidden in the textual details and is not easily accessible for further analysis. Hence, text mining methods and natural language processing techniques are used for the extraction of information from such publications.Named entity recognition, is a subtask that comes under information extraction that focuses on finding and categorizing specific …


Network Traffic Anomaly Detection Method For Imbalanced Data, Shuqin Dong, Bin Zhang Mar 2021

Network Traffic Anomaly Detection Method For Imbalanced Data, Shuqin Dong, Bin Zhang

Journal of System Simulation

Abstract: Aiming at the poor detection performances caused by the low feature extraction accuracy of rare traffic attacks from scarce samples, a network traffic anomaly detection method for imbalanced data is proposed. A traffic anomaly detection model is designed, in which the traffic features in different feature spaces are learned by alternating activation functions, architectures, corrupted rates and dropout rates of stacked denoising autoencoder (SDA), and the low accuracy in extracting features of rare traffic attacks in a single space is solved. A batch normalization algorithm is designed, and the Adam algorithm is adopted to train parameters of …


On-Device Deep Learning Inference For System-On-Chip (Soc) Architectures, Tom Springer, Elia Eiroa-Lledo, Elizabeth Stevens, Erik Linstead Mar 2021

On-Device Deep Learning Inference For System-On-Chip (Soc) Architectures, Tom Springer, Elia Eiroa-Lledo, Elizabeth Stevens, Erik Linstead

Engineering Faculty Articles and Research

As machine learning becomes ubiquitous, the need to deploy models on real-time, embedded systems will become increasingly critical. This is especially true for deep learning solutions, whose large models pose interesting challenges for target architectures at the “edge” that are resource-constrained. The realization of machine learning, and deep learning, is being driven by the availability of specialized hardware, such as system-on-chip solutions, which provide some alleviation of constraints. Equally important, however, are the operating systems that run on this hardware, and specifically the ability to leverage commercial real-time operating systems which, unlike general purpose operating systems such as Linux, can …


Wg2An: Synthetic Wound Image Generation Using Generative Adversarial Network, Salih Sarp, Murat Kuzlu, Emmanuel Wilson, Ozgur Guler Mar 2021

Wg2An: Synthetic Wound Image Generation Using Generative Adversarial Network, Salih Sarp, Murat Kuzlu, Emmanuel Wilson, Ozgur Guler

Engineering Technology Faculty Publications

In part due to its ability to mimic any data distribution, Generative Adversarial Network (GAN) algorithms have been successfully applied to many applications, such as data augmentation, text-to-image translation, image-to-image translation, and image inpainting. Learning from data without crafting loss functions for each application provides broader applicability of the GAN algorithm. Medical image synthesis is also another field that the GAN algorithm has great potential to assist clinician training. This paper proposes a synthetic wound image generation model based on GAN architecture to increase the quality of clinical training. The proposed model is trained on chronic wound datasets with various …


Deep Learning For Task-Based Image Quality Assessment In Medical Imaging, Weimin Zhou Jan 2021

Deep Learning For Task-Based Image Quality Assessment In Medical Imaging, Weimin Zhou

McKelvey School of Engineering Theses & Dissertations

It has been advocated to use objective measures of image quality (IQ) for assessing and optimizing medical imaging systems. Objective measures of IQ quantify the performance of an observer at a specific diagnostic task. Binary signal detection tasks and joint signal detection and localization (detection-localization) tasks are commonly considered in medical imaging. When optimizing imaging systems for binary signal detection tasks, the performance of the Bayesian Ideal Observer (IO) has been advocated for use as a figure-of-merit (FOM). The IO maximizes the observer performance that is summarized by the receiver operating characteristic (ROC) curve. When signal detection-localization tasks are considered, …


Deep Learning Techniques Of Losses In Data Transmitted In Wirelesssensor Networks, Mevlüt Ersoy, Beki̇r Aksoy Jan 2021

Deep Learning Techniques Of Losses In Data Transmitted In Wirelesssensor Networks, Mevlüt Ersoy, Beki̇r Aksoy

Turkish Journal of Electrical Engineering and Computer Sciences

Wireless sensor network (WSN) systems are frequently used today as a result of rapid technological developments. Wireless sensor networks, which form the basis of the Internet of Things (IoT), have a wide range of use in theworld from education to health, and from military applications to home applications. It enables the data obtained fromthe sensors to be transferred between nodes with the help of end-to-end wireless protocols. In parallel with the increasingnumber of nodes in WSN, data tra?ic density also increases. Due to the limitations of the WSN network, lost packetrates also increase with increasing data tra?ic. In this study, …


Ensemble Learning Of Multiview Cnn Models For Survival Time Prediction Of Braintumor Patients Using Multimodal Mri Scans, Abdela Ahmed Mossa, Ulus Çevi̇k Jan 2021

Ensemble Learning Of Multiview Cnn Models For Survival Time Prediction Of Braintumor Patients Using Multimodal Mri Scans, Abdela Ahmed Mossa, Ulus Çevi̇k

Turkish Journal of Electrical Engineering and Computer Sciences

Brain tumors have been one of the most common life-threatening diseases for all mankind. There have beenhuge efforts dedicated to the development of medical imaging techniques and radiomics to diagnose tumor patients quicklyand e?iciently. One of the main aims is to ensure that preoperative overall survival time (OS) prediction is accurate.Recently, deep learning (DL) algorithms, and particularly convolutional neural networks (CNNs) achieved promisingperformances in almost all computer vision fields. CNNs demand large training datasets and high computational costs.However, curating large annotated medical datasets are difficult and resource-intensive. The performances of singlelearners are also unsatisfactory for small datasets. Thus, this study …


Neural Relation Extraction: A Review, Mehmet Aydar, Özge Bozal, Furkan Özbay Jan 2021

Neural Relation Extraction: A Review, Mehmet Aydar, Özge Bozal, Furkan Özbay

Turkish Journal of Electrical Engineering and Computer Sciences

Neural relation extraction discovers semantic relations between entities from unstructured text using deeplearning methods. In this study, we make a clear categorization of the existing relation extraction methods in termsof data expressiveness and data supervision, and present a comprehensive and comparative review. We describe theevaluation methodologies and the datasets used for model assessment. We explicitly state the common challenges inrelation extraction task and point out the potential of the pretrained models to solve them. Accordingly, we investigateadditional research directions and improvement ideas in this field.


Learning Multiview Deep Features From Skeletal Sign Language Videos Forrecognition, Ashraf Ali Shaik, Venkata Durga Prasad Mareedu, Venkata Vijaya Kishore Polurie Jan 2021

Learning Multiview Deep Features From Skeletal Sign Language Videos Forrecognition, Ashraf Ali Shaik, Venkata Durga Prasad Mareedu, Venkata Vijaya Kishore Polurie

Turkish Journal of Electrical Engineering and Computer Sciences

The most challenging objective in machine translation of sign language has been the machine?s inability tolearn interoccluding finger movements during an action process. This work addresses the problem of teaching a deeplearning model to recognize differently oriented skeletal data. The multi-view 2D skeletal sign language video data isobtained using 3D motion-captured system. A total of 9 signer views were used for training the proposed network andthe 6 for testing and validation. In order to obtain multi-view deep features for recognition, we proposed an end-to-endtrainable multistream convolutional neural network (CNN) with late feature fusion. The fused multiview features arethen inputted to …


Turkish Sign Language Recognition Based On Multistream Data Fusion, Cemi̇l Gündüz, Hüseyi̇n Polat Jan 2021

Turkish Sign Language Recognition Based On Multistream Data Fusion, Cemi̇l Gündüz, Hüseyi̇n Polat

Turkish Journal of Electrical Engineering and Computer Sciences

Sign languages are nonverbal, visual languages that hearing- or speech-impaired people use for communication.Aside from hands, other communication channels such as body posture and facial expressions are also valuable insign languages. As a result of the fact that the gestures in sign languages vary across countries, the significance ofcommunication channels in each sign language also differs. In this study, representing the communication channels usedin Turkish sign language, a total of 8 different data streams-4 RGB, 3 pose, 1 optical flow-were analyzed. Inception3D was used for RGB and optical flow; and LSTM-RNN was used for pose data streams. Experiments were conductedby …


Visual Object Detection For Autonomous Transport Vehicles In Smart Factories, Nazlican Gengeç, Onur Eker, Hakan Çevi̇kalp, Ahmet Yazici, Hasan Serhan Yavuz Jan 2021

Visual Object Detection For Autonomous Transport Vehicles In Smart Factories, Nazlican Gengeç, Onur Eker, Hakan Çevi̇kalp, Ahmet Yazici, Hasan Serhan Yavuz

Turkish Journal of Electrical Engineering and Computer Sciences

Autonomous transport vehicles (ATVs) are one of the most substantial components of smart factories of Industry 4.0. They are primarily considered to transfer the goods or perform some certain navigation tasks in the factory with self driving. The recent developments on computer vision studies allow the vehicles to visually perceive the environment and the objects in the environment. There are numerous applications especially for smart traffic networks in outdoor environments but there is lack of application and databases for autonomous transport vehicles in indoor industrial environments. There exist some essential safety and direction signs in smart factories and these signs …


Sleep Staging With Deep Structured Neural Net Using Gabor Layer And Dataaugmentation, Ali Erfani Sholeyan, Fereidoun Nowshiravan Rahatabad, Kamal Setaredan Jan 2021

Sleep Staging With Deep Structured Neural Net Using Gabor Layer And Dataaugmentation, Ali Erfani Sholeyan, Fereidoun Nowshiravan Rahatabad, Kamal Setaredan

Turkish Journal of Electrical Engineering and Computer Sciences

Slow wave sleep (SWS) and rapid eye movement (REM) are two of the most important sleep stages that are considered in many studies. Detection of these two sleep stages will help researchers in many applications to detect sleeprelated diseases and disorders and also in many fields of neuroscience studies such as cognitive impairment and memory consolidation. Since manual sleep staging is time-consuming, subjective, and expensive; designing an efficient automatic sleep scoring system will overcome some of these difficulties. Many studies have proposed automatic sleep staging systems with different methods. In recent years, deep learning methods show their potential in different …


Malignant Skin Melanoma Detection Using Image Augmentation By Oversamplingin Nonlinear Lower-Dimensional Embedding Manifold, Olusola Oluwakemi Abayomi-Alli, Robertas Damasevicius, Sanjay Misra, Rytis Maskeliunas, Adebayo Abayomi-Alli Jan 2021

Malignant Skin Melanoma Detection Using Image Augmentation By Oversamplingin Nonlinear Lower-Dimensional Embedding Manifold, Olusola Oluwakemi Abayomi-Alli, Robertas Damasevicius, Sanjay Misra, Rytis Maskeliunas, Adebayo Abayomi-Alli

Turkish Journal of Electrical Engineering and Computer Sciences

The continuous rise in skin cancer cases, especially in malignant melanoma, has resulted in a high mortality rate of the affected patients due to late detection. Some challenges affecting the success of skin cancer detection include small datasets or data scarcity problem, noisy data, imbalanced data, inconsistency in image sizes and resolutions, unavailability of data, reliability of labeled data (ground truth), and imbalance of skin cancer datasets. This study presents a novel data augmentation technique based on covariant Synthetic Minority Oversampling Technique (SMOTE) to address the data scarcity and class imbalance problem. We propose an improved data augmentation model for …


Evolution Of Histopathological Breast Cancer Images Classification Using Stochasticdilated Residual Ghost Model, Ramgopal Kashyap Jan 2021

Evolution Of Histopathological Breast Cancer Images Classification Using Stochasticdilated Residual Ghost Model, Ramgopal Kashyap

Turkish Journal of Electrical Engineering and Computer Sciences

Breast cancer detection is a complex problem to solve, and it is a topic that is still being studied. Deep learning-based models aid medical science by helping to classify benign and malignant cancers and saving lives. Breast cancer histopathological image classification (BreakHis) and breast cancer histopathological annotation and diagnosis (BreCaHAD) datasets are used in the proposed model. The study led to the resolution of four essential issues: 1) Addresses the color divergence issue caused by strain normalization during image generation 2) Data augmentation uses several factors like as flip, rotation, shift, resize, and gamma value in order to overcome overfitting …