Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Star-Based Reachability Analysis Of Binary Neural Networks On Continuous Input, Mykhailo Ivashchenko May 2024

Star-Based Reachability Analysis Of Binary Neural Networks On Continuous Input, Mykhailo Ivashchenko

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Deep Neural Networks (DNNs) have become a popular instrument for solving various real-world problems. DNNs’ sophisticated structure allows them to learn complex representations and features. However, architecture specifics and floating-point number usage result in increased computational operations complexity. For this reason, a more lightweight type of neural networks is widely used when it comes to edge devices, such as microcomputers or microcontrollers – Binary Neural Networks (BNNs). Like other DNNs, BNNs are vulnerable to adversarial attacks; even a small perturbation to the input set may lead to an errant output. Unfortunately, only a few approaches have been proposed for verifying …


Uncovering And Mitigating Spurious Features In Domain Generalization, Saeed Karimi, Hamdi̇ Di̇bekli̇oğlu Mar 2024

Uncovering And Mitigating Spurious Features In Domain Generalization, Saeed Karimi, Hamdi̇ Di̇bekli̇oğlu

Turkish Journal of Electrical Engineering and Computer Sciences

Domain generalization (DG) techniques strive to attain the ability to generalize to an unfamiliar target domain solely based on training data originating from the source domains. Despite the increasing attention given to learning from multiple training domains through the application of various forms of invariance across those domains, the enhancements observed in comparison to ERM are nearly insignificant under specified evaluation rules. In this paper, we demonstrate that the disentanglement of spurious and invariant features is a challenging task in conventional training since ERM simply minimizes the loss and does not exploit invariance among domains. To address this issue, we …


Relative Vectoring Using Dual Object Detection For Autonomous Aerial Refueling, Derek B. Worth, Jeffrey L. Choate, James Lynch, Scott L. Nykl, Clark N. Taylor Mar 2024

Relative Vectoring Using Dual Object Detection For Autonomous Aerial Refueling, Derek B. Worth, Jeffrey L. Choate, James Lynch, Scott L. Nykl, Clark N. Taylor

Faculty Publications

Once realized, autonomous aerial refueling will revolutionize unmanned aviation by removing current range and endurance limitations. Previous attempts at establishing vision-based solutions have come close but rely heavily on near perfect extrinsic camera calibrations that often change midflight. In this paper, we propose dual object detection, a technique that overcomes such requirement by transforming aerial refueling imagery directly into receiver aircraft reference frame probe-to-drogue vectors regardless of camera position and orientation. These vectors are precisely what autonomous agents need to successfully maneuver the tanker and receiver aircraft in synchronous flight during refueling operations. Our method follows a common 4-stage process …


Motion Magnification-Inspired Feature Manipulation For Deepfake Detection, Aydamir Mirzayev, Hamdi Di̇bekli̇oğlu Feb 2024

Motion Magnification-Inspired Feature Manipulation For Deepfake Detection, Aydamir Mirzayev, Hamdi Di̇bekli̇oğlu

Turkish Journal of Electrical Engineering and Computer Sciences

Recent advances in deep learning, increased availability of large-scale datasets, and improvement of accelerated graphics processing units facilitated creation of an unprecedented amount of synthetically generated media content with impressive visual quality. Although such technology is used predominantly for entertainment, there is widespread practice of using deepfake technology for malevolent ends. This potential for malicious use necessitates the creation of detection methods capable of reliably distinguishing manipulated video content. In this work we aim to create a learning-based detection method for synthetically generated videos. To this end, we attempt to detect spatiotemporal inconsistencies by leveraging a learning-based magnification-inspired feature manipulation …


A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari Jan 2024

A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari

Computer Science Faculty Publications

Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental …