Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

An Intelligent Attitude Determination And Control System Concept For A Cubesat Class Spacecraft, Jeremy Straub Sep 2015

An Intelligent Attitude Determination And Control System Concept For A Cubesat Class Spacecraft, Jeremy Straub

Jeremy Straub

An attitude determination and control system (ADCS) is used to orient a spacecraft for a wide variety of purposes (e.g., to keep a camera facing Earth or orient the spacecraft for propulsion system use). The proposed intelligent ADCS has several key features: first, it can be used in multiple modes, spanning from passive stabilization of two axes and unconstrained spin on a third to three-axis full active stabilization. It also includes electromagnetic components to ‘dump’ spin from the reaction wheels. Second, the ADCS utilizes an incorporated autonomous control algorithm to characterize the effect of actuation of the system components and, …


Supervisory Control And Data Acquisition (Scada) Control Optimization, Garrett Johnson, Jeremy Straub, Eunjin Kim Apr 2015

Supervisory Control And Data Acquisition (Scada) Control Optimization, Garrett Johnson, Jeremy Straub, Eunjin Kim

Jeremy Straub

SCADA systems are generally used to monitor and control multiple systems of the same type to allow them to be remotely controlled and monitored. Water plants, for example, could be controlled and monitored by a SCADA system. This project seeks to optimize a SCADA system using Artificial Intelligence. A constraint satisfaction / optimization algorithm is used to maximize performance relative to weighted system goals.


A Software Defined Radio Communications System For A Small Spacecraft, Michael Hlas, Jeremy Straub, Ronald Marsh Apr 2015

A Software Defined Radio Communications System For A Small Spacecraft, Michael Hlas, Jeremy Straub, Ronald Marsh

Jeremy Straub

Software defined radios (SDRs) are poised to significantly enhance the future of small spacecraft communications. They allow signal processing to be performed on a computer by software rather than requiring dedicated hardware. The OpenOrbiter SDR (discussed in [1] and refined in [2]) takes data from the flight computer and converts it into an analog signal that is transmitted via the spacecraft antenna. Because the signal processing is done in software, the radio can be easily reconfigured. This process is done in reverse for incoming transmissions, which are received by the SDR and decoded by software. Figures 1 and 2 provide …


An Onboard Distributed Multiprocessing System For A Cubesat Spacecraft Created From Gumstix Computer-On-Module Units, Michael Wegerson, Jeremy Straub, Ronald Marsh Apr 2015

An Onboard Distributed Multiprocessing System For A Cubesat Spacecraft Created From Gumstix Computer-On-Module Units, Michael Wegerson, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative at the University of North Dakota [1] aims to make ac-cess to space for research and educational purposes easier by enabling the creation of low-cost CubeSats. It is creating the Open Prototype for Educational Nanosats (OPEN), a framework for developing a 1-U CubeSat space-craft with a parts cost of less than $5,000 [2]. The designs [3], documentation and computer code from this will be made publically available to enable the development of programs at other institutions.


The Use Of Low-Cost ‘Balloonsats’ For Stem Education With 3d Printing, Jeremy Straub, Josh Berk, John Nordlie, Ronald Marsh Apr 2015

The Use Of Low-Cost ‘Balloonsats’ For Stem Education With 3d Printing, Jeremy Straub, Josh Berk, John Nordlie, Ronald Marsh

Jeremy Straub

A new technology, known as 3D printing, allows the rap-id fabrication of plastic structures of virtually any config-uration. These structures are light-weight, dura-ble and inexpensive. This paper considers the utility of utilizing 3D printing to create enclosures for ‘BalloonSats’ – small, low-cost spacecraft analog which can be utilized by students to understand space engi-neering, conduct near-space science (e.g., physics, bio-logical and other experiments) and touch the edge of space.


Considering Scheduling Algorithms For An Open Source Software Spacecraft, Calvin Bina, Jeremy Straub, Ronald Marsh Apr 2015

Considering Scheduling Algorithms For An Open Source Software Spacecraft, Calvin Bina, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter Small Satellite Development Initiative at the University of North Dakota [1] is working make space research and education more accessible world-wide [2], through the design and public release of a complete set of plans, software and other documents (see [3]) for a 1-U CubeSat. This design targets a parts cost of no more than $5,000 [4]. These lowered costs, combined with the efficiencies of the CubeSat form fac-tor [5] and free-to-qualified-developer launch services [6, 7] should facilitate greater access to space for the ed-ucational, research and other communities.


Designing An Intelligent Attitude Determination And Control System (Adcs), Michael Wegerson, Matt Partridge, Nathan Crocker, David Schindele, Broc Friend, Levi Lewis, Ben Johnson, Jeremy Straub, Ronald Marsh Apr 2015

Designing An Intelligent Attitude Determination And Control System (Adcs), Michael Wegerson, Matt Partridge, Nathan Crocker, David Schindele, Broc Friend, Levi Lewis, Ben Johnson, Jeremy Straub, Ronald Marsh

Jeremy Straub

CubeSat spacecraft have been shown to provide significant cost [1], research [1] and educational benefits [2]. Prior work at UND has demonstrated the efficacy of this form factor of craft for asteroid as-sessment activities [3] and onboard image processing [4]. Work is al-so ongoing to develop a low-cost framework [5] for CubeSat devel-opment to enable activities at UND and at other locations.


Creating A Low-Cost Radio For An Open Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh Apr 2015

Creating A Low-Cost Radio For An Open Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh

Jeremy Straub

A reliable communication system is key to the success of a CubeSat mission, allowing for data to be trans-mitted to the ground station and commands to be up-loaded to the satellite. To satisfy this need, the OpenOrbiter satellite (a 1-U CubeSat [1], being devel-oped with a target parts budget of under $5,000 [2]) is leveraging previously space-tested [3], low-cost trans-ceiver design which is based on the SI 4463 IC unit. This board design will be included in the publically available Open Framework for Educational Nanosatel-lites (OPEN) allowing others to modify, enhance and/or make use of the design in the future.


Update On The Progress Of The 1-U Open Cubesat Development, Jeremy Straub, Ronald Marsh Apr 2015

Update On The Progress Of The 1-U Open Cubesat Development, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter program [1] is developing a low-cost framework for the creation of space-craft [2] by researchers and educators world-wide [3]. In line with the objective of enabling future educational use by others, educational assessment [4, 5] has been a key focus. Sever-al areas were assessed: students were asked what types of benefits they sought from their participation [6], assessment of benefit attain-ment is ongoing. Work on the development of a designs (See Figures 2 and 8) that can be used to build a spacecraft with a cost of under $5,000 [7] using primarily COTS parts and testing (see Figure …


Three-Dimensional Printing And Scanning Web-Based Job Management System, Stephanie Hollman, Dalyn Limesand, Jeremy Straub, Scott Kerlin Apr 2015

Three-Dimensional Printing And Scanning Web-Based Job Management System, Stephanie Hollman, Dalyn Limesand, Jeremy Straub, Scott Kerlin

Jeremy Straub

Three-dimensional (3D) printers have gained popularity for use for many different projects. The work presented herein aims to make this process simpler. This poster discusses a system that will allow individuals from all over campus to submit object files for printing, without having to schedule appointments and schedule 3D scanning appointments and retrieve scan results.


Design Of An Onboard Distributed Multiprocessing System For A Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh Mar 2015

Design Of An Onboard Distributed Multiprocessing System For A Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter program aims to develop a low-cost framework to facilitate the development of CubeSat-class spacecraft (small spacecraft with nominal dimensions of 10 cm x 10 cm x 10 cm) for a parts cost of less than $5,000. To validate the framework that has been developed, a prototype unit will also be fabricated and tested in low-Earth orbit. In addition to validating the development of Open Prototype for Educational Nanosats (OPEN) framework, the spacecraft will perform on-orbit science. One aspect of the science mission will be to demonstrate and characterize the efficacy of two types of image processing. To this …


Analysis Of A ‘Turn-Key’ No Hardware Space Mission Using The Orbital Services Model, Jeremy Straub Mar 2015

Analysis Of A ‘Turn-Key’ No Hardware Space Mission Using The Orbital Services Model, Jeremy Straub

Jeremy Straub

Many applications that would benefit from access to space cannot afford the cost of spacecraft development, launch and operations. Other operations require only a fraction of a spacecraft or complete use of a spacecraft for a limited period of time. This paper considers the value of a ‘turn-key’ style space mission. It considers what types of missions could be reasonably conducted using this approach. The economics of being a service provider are considered. Then, a prospective mission concept for one OSM ‘turn-key’ mission is presented. The value proposition of this mission is assessed and the hardware and other capabilities required …


Nanosatellite Scheduling Using A Dictionary Module And A ‘Useful Trick’ With Coded Unsigned Integers, Monilito Castro, Jeremy Straub Mar 2015

Nanosatellite Scheduling Using A Dictionary Module And A ‘Useful Trick’ With Coded Unsigned Integers, Monilito Castro, Jeremy Straub

Jeremy Straub

Schedulers for small spacecraft must satisfy the dual requirement of generating very efficient schedules while concurrently minimizing the resources required to create the schedule. This paper proposes a technique for searching for tasks that can be utilized to fill particular schedule locations. This approach is based on a modular system for storing important variables. This modular system has three important variables: t0, x0 and y0. The variable y is latitude and x is longitude. Time variable t is an integer and each unit represents a time quantum. They are related to each other by three functions Ft, Fx, and Fy. …


Swarm Intelligence, A Blackboard Architecture And Local Decision Making For Spacecraft Command, Jeremy Straub Mar 2015

Swarm Intelligence, A Blackboard Architecture And Local Decision Making For Spacecraft Command, Jeremy Straub

Jeremy Straub

Control of a multi-spacecraft constellation is a topic of significant inquiry, at present. This paper presents and evaluates a command architecture for a multi-spacecraft mission. It combines swarm techniques with a decentralized / local decision making architecture (which uses a set of shared blackboards for coordination) and demonstrates the efficacy of this approach. Under this approach, the Blackboard software architecture is used to facilitate data sharing between craft as part of a resilient hierarchy and the swarm techniques are used to coordinate activity. The paper begins with an overview of prior work on the precursor command technologies and then presents …


Small Satellite Communications Security And Student Learning In The Development Of Ground Station Software, Scott Kerlin, Jeremy Straub, Jacob Huhn, Alexander Lewis Mar 2015

Small Satellite Communications Security And Student Learning In The Development Of Ground Station Software, Scott Kerlin, Jeremy Straub, Jacob Huhn, Alexander Lewis

Jeremy Straub

Communications security is gaining importance as small spacecraft include actuator capabilities (i.e., propulsion), payloads which could be misappropriated (i.e., high resolution cameras), and research missions with high value/cost. However, security is limited by capability, interoperability and regulation. Additionally, as the small satellite community becomes more mainstream and diverse, the lack of cheap, limited-to-no configuration, pluggable security modules for small satellites also presents a limit for user adoption of security.

This paper discusses a prospective approach for incorporating robust security into a student-developed ground station created at the University of North Dakota as part of a Computer Science Department senior design …