Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

A Computational Analysis Of The Gradient Concentration Profile Of Deet And The Mosquito Behavioral Response, Brandon Carver Dec 2018

A Computational Analysis Of The Gradient Concentration Profile Of Deet And The Mosquito Behavioral Response, Brandon Carver

Master's Theses

DEET is a common active ingredient in most spatial repellents. DEET is also a volatile organic compound. DEET prevents mosquitoes from detecting and coming into contact with an human individual. Gas sensing technologies such as metal oxide semiconductor sensors can detect VOCs. The World Health Organization provides the majority of efficacy testing methods. This research adapts methods from the WHO and use of MOS sensors to further understand how and why DEET affects mosquitos. A custom developed system is used to measure DEET dissipation and observe mosquito behavioral response to the DEET. DEET dissipations and mosquito behavior is measured within …


Fluid Agitation Studies For Drug Product Containers Using Computational Fluid Dynamics, Matthew Hiroki Ichinose Dec 2018

Fluid Agitation Studies For Drug Product Containers Using Computational Fluid Dynamics, Matthew Hiroki Ichinose

Master's Theses

At Amgen, the Automated Vision Inspection (AVI) systems capture the movement of unwanted particles in Amgen's drug product containers. For quality inspection, the AVI system must detect these undesired particles using a high speed spin-stop agitation process. To better understand the fluid movements to swirl the particles away from the walls, Computational Fluid Dynamics (CFD) is used to analyze the nature of the two phase flow of air and a liquid solution.

Several 2-D and 3-D models were developed using Fluent to create simulations of Amgen's drug product containers for a 1 mL syringe, 2.25 mL syringe, and a 5 …


Population Curation In Swarms: Predicting Top Performers, Ryan W. Heller Dec 2018

Population Curation In Swarms: Predicting Top Performers, Ryan W. Heller

Master's Theses

In recent years, new Artificial Intelligence technologies have mimicked examples of collective intelligence occurring in the natural world including flocks of birds, schools of fish, and swarms of bees. One company in particular, Unanimous AI, built a platform (UNU Swarm) that enables a group of humans to make decisions as a single mind by forming a real-time closed-loop feedback system for individuals. This platform has proven the ability to amplify the predictive ability of groups of humans in realms including sports, medicine, politics, finance, and entertainment. Previous research has demonstrated it is possible to further enhance knowledge accumulation within a …


The Development And Validation Of Sinatra: A Three-Dimensional Direct Simulation Monte Carlo (Dsmc) Code Written In Object-Oriented C++ And Performed On Cartesian Grids, David Matthew Galvez Aug 2018

The Development And Validation Of Sinatra: A Three-Dimensional Direct Simulation Monte Carlo (Dsmc) Code Written In Object-Oriented C++ And Performed On Cartesian Grids, David Matthew Galvez

Master's Theses

The field of Computational Fluid Dynamics (CFD) primarily involves the approximation of the Navier-Stokes equations. However, these equations are only valid when the flow is considered continuous such that molecular interactions are abundant and predictable. The Knudsen number, $Kn$, which is defined as the ratio of the flow's mean free path, $\lambda$, to some characteristic length, $L$, quantifies the continuity of any flow, and when this parameter is large enough, alternative methods must be employed to simulate gases. The Direct Simulation Monte Carlo (DSMC) method is one which simulates rarefied gas flows by directly simulating the particles that compose the …


Artificial Neural Network-Based Robotic Control, Justin Ng Jun 2018

Artificial Neural Network-Based Robotic Control, Justin Ng

Master's Theses

Artificial neural networks (ANNs) are highly-capable alternatives to traditional problem solving schemes due to their ability to solve non-linear systems with a nonalgorithmic approach. The applications of ANNs range from process control to pattern recognition and, with increasing importance, robotics. This paper demonstrates continuous control of a robot using the deep deterministic policy gradients (DDPG) algorithm, an actor-critic reinforcement learning strategy, originally conceived by Google DeepMind. After training, the robot performs controlled locomotion within an enclosed area. The paper also details the robot design process and explores the challenges of implementation in a real-time system.


Automated Pruning Of Greenhouse Indeterminate Tomato Plants, Joey M. Angeja Jun 2018

Automated Pruning Of Greenhouse Indeterminate Tomato Plants, Joey M. Angeja

Master's Theses

Pruning of indeterminate tomato plants is vital for a profitable yield and it still remains a manual process. There has been research in automated pruning of grapevines, trees, and other plants, but tomato plants have yet to be explored. Wage increases are contributing to the depleting profits of greenhouse tomato farmers. Rises in population are the driving force behind the need for efficient growing techniques. The major contribution of this thesis is a computer vision algorithm for detecting greenhouse tomato pruning points without the use of depth sensors. Given an up-close 2-D image of a tomato stem with the background …


Towards Autonomous Localization Of An Underwater Drone, Nathan Sfard Jun 2018

Towards Autonomous Localization Of An Underwater Drone, Nathan Sfard

Master's Theses

Autonomous vehicle navigation is a complex and challenging task. Land and aerial vehicles often use highly accurate GPS sensors to localize themselves in their environments. These sensors are ineffective in underwater environments due to signal attenuation. Autonomous underwater vehicles utilize one or more of the following approaches for successful localization and navigation: inertial/dead-reckoning, acoustic signals, and geophysical data. This thesis examines autonomous localization in a simulated environment for an OpenROV Underwater Drone using a Kalman Filter. This filter performs state estimation for a dead reckoning system exhibiting an additive error in location measurements. We evaluate the accuracy of this Kalman …


N-Slope: A One-Class Classification Ensemble For Nuclear Forensics, Justin Kehl Jun 2018

N-Slope: A One-Class Classification Ensemble For Nuclear Forensics, Justin Kehl

Master's Theses

One-class classification is a specialized form of classification from the field of machine learning. Traditional classification attempts to assign unknowns to known classes, but cannot handle novel unknowns that do not belong to any of the known classes. One-class classification seeks to identify these outliers, while still correctly assigning unknowns to classes appropriately. One-class classification is applied here to the field of nuclear forensics, which is the study and analysis of nuclear material for the purpose of nuclear incident investigations. Nuclear forensics data poses an interesting challenge because false positive identification can prove costly and data is often small, high-dimensional, …


Vehicle Pseudonym Association Attack Model, Pierson Yieh Jun 2018

Vehicle Pseudonym Association Attack Model, Pierson Yieh

Master's Theses

With recent advances in technology, Vehicular Ad-hoc Networks (VANETs) have grown in application. One of these areas of application is Vehicle Safety Communication (VSC) technology. VSC technology allows for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications that enhance vehicle safety and driving experience. However, these newly developing technologies bring with them a concern for the vehicular privacy of drivers. Vehicles already employ the use of pseudonyms, unique identifiers used with signal messages for a limited period of time, to prevent long term tracking. But can attackers still attack vehicular privacy even when vehicles employ a pseudonym change strategy? The major contribution …


Optimizing The Distributed Hydrology Soil Vegetation Model For Uncertainty Assessment With Serial, Multicore And Distributed Accelerations, Andrew Adriance May 2018

Optimizing The Distributed Hydrology Soil Vegetation Model For Uncertainty Assessment With Serial, Multicore And Distributed Accelerations, Andrew Adriance

Master's Theses

Hydrology is the study of water. Hydrology tracks various attributes of water such as its quality and movement. As a tool Hydrology allows researchers to investigate topics such as the impacts of wildfires, logging, and commercial development. With perfect and complete data collection researchers could answer these questions with complete certainty. However, due to cost and potential sources of error this is impractical. As such researchers rely on simulations.

The Distributed Hydrology Soil Vegetation Model(also referenced to as DHSVM) is a scientific mathematical model to numerically represent watersheds. Hydrology, as with all fields, continues to produce large amounts of data …


Rotordynamic Analysis Of Theoretical Models And Experimental Systems, Cameron R. Naugle Apr 2018

Rotordynamic Analysis Of Theoretical Models And Experimental Systems, Cameron R. Naugle

Master's Theses

This thesis is intended to provide fundamental information for the construction and

analysis of rotordynamic theoretical models, and their comparison the experimental

systems. Finite Element Method (FEM) is used to construct models using Timoshenko

beam elements with viscous and hysteretic internal damping. Eigenvalues

and eigenvectors of state space equations are used to perform stability analysis, produce

critical speed maps, and visualize mode shapes. Frequency domain analysis

of theoretical models is used to provide Bode diagrams and in experimental data

full spectrum cascade plots. Experimental and theoretical model analyses are used

to optimize the control algorithm for an Active Magnetic Bearing …


Applying Neural Networks For Tire Pressure Monitoring Systems, Alex Kost Mar 2018

Applying Neural Networks For Tire Pressure Monitoring Systems, Alex Kost

Master's Theses

A proof-of-concept indirect tire-pressure monitoring system is developed using neural net- works to identify the tire pressure of a vehicle tire. A quarter-car model was developed with Matlab and Simulink to generate simulated accelerometer output data. Simulation data are used to train and evaluate a recurrent neural network with long short-term memory blocks (RNN-LSTM) and a convolutional neural network (CNN) developed in Python with Tensorflow. Bayesian Optimization via SigOpt was used to optimize training and model parameters. The predictive accuracy and training speed of the two models with various parameters are compared. Finally, future work and improvements are discussed.