Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Failure Sampling With Optimized Ensemble Approach For The Structural Reliability Analysis Of Complex Problems, Christopher Eamon, Kapil Patki, Ahmad Alsendi Oct 2020

Failure Sampling With Optimized Ensemble Approach For The Structural Reliability Analysis Of Complex Problems, Christopher Eamon, Kapil Patki, Ahmad Alsendi

Civil and Environmental Engineering Faculty Research Publications

Failure sampling is a structural reliability method based on modified conditional expectation suitable for complex problems for which reliability index-based approaches are inapplicable and simulation is needed. Such problems tend to have non-smooth limit state boundaries or are otherwise highly nonlinear. Previous studies recommended implementation of failure sampling with an extrapolation technique using Johnson's distribution or the generalized lambda distribution. However, what implementation method works best is problem dependent. The uncertainty of which approach provides best results for a particular problem limits the potential effectiveness of the method. In this study, a solution is proposed to this issue that eliminates …


Development Of Traffic Live Load Models For Bridge Superstructure Rating With Rbdo And Best Selection Approach, Sasan Siavashi, Christopher D. Eamon May 2019

Development Of Traffic Live Load Models For Bridge Superstructure Rating With Rbdo And Best Selection Approach, Sasan Siavashi, Christopher D. Eamon

Civil and Environmental Engineering Faculty Research Publications

Reliability-based design optimization (RBDO) is frequently used to determine optimal structural geometry and material characteristics that can best meet performance goals while considering uncertainties. In this study, the effectiveness of RBDO to develop a rating load model for a set of bridge structures is explored, as well as the use of an alternate Best Selection procedure that requires substantially less computational effort. The specific problem investigated is the development of a vehicular load model for use in bridge rating, where the objective of the optimization is to minimize the variation in reliability index across different girder types and bridge geometries. …


Integrated Strategies For Sustainable Wastewater-Based Algal Biofuel Production And Environmental Mitigation In The Us, Javad Roostaei Jan 2018

Integrated Strategies For Sustainable Wastewater-Based Algal Biofuel Production And Environmental Mitigation In The Us, Javad Roostaei

Wayne State University Dissertations

Integration of algae cultivation with wastewater treatment has received increasing interest as a cost-effective strategy for biofuel production. However, there has been no full assessment of algal biofuel production with wastewater on macro-scale by taking into account wastewater resources, land availability, CO2 emission resources, and geographic variation. This research addressed and evaluated the use of wastewater for algae cultivation, in terms of modeling and laboratory experiments. The first goal of this research was to develop a spatially explicit lifecycle model, by integrating life cycle assessment (LCA), and Geographic Information Systems (GIS) analysis, for the evaluation of the environmental and economic …


Pepso: Reducing Electricity Usage And Associated Pollution Emissions Of Water Pumps, Seyed Mohsen Sadatiyan Abkenar, Carol J. Miller Aug 2017

Pepso: Reducing Electricity Usage And Associated Pollution Emissions Of Water Pumps, Seyed Mohsen Sadatiyan Abkenar, Carol J. Miller

Civil and Environmental Engineering Faculty Research Publications

Using metaheuristic optimization methods has enabled researchers to reduce the electricity consumption cost of small water distribution systems (WDSs). However, dealing with complicated WDSs and reducing their environmental footprint remains a challenge. In this study a multi-objective version of Pollution Emission Pump Station Optimization tool (PEPSO) is introduced that can reduce the electricity cost and pollution emissions (associated with the energy consumption) of pumps of WDSs. PEPSO includes a user-friendly graphical interface and a customized version of the non-dominated sorting genetic algorithm. A measure that is called “Undesirability Index” (UI) is defined to assist the search for a promising optimization …


Enhanced Pump Schedule Optimization For Large Water Distribution Networks To Maximize Environmental And Economic Benefits, Seyed Mohsen Sadatiyan Abkenar Jan 2016

Enhanced Pump Schedule Optimization For Large Water Distribution Networks To Maximize Environmental And Economic Benefits, Seyed Mohsen Sadatiyan Abkenar

Wayne State University Dissertations

For more than four decades researchers tried to develop optimization method and tools to reduce electricity consumption of pump stations of water distribution systems. Based on this ongoing research trend, about a decade ago, some commercial pump operation optimization software introduced to the market. Using metaheuristic and evolutionary techniques (e.g. Genetic Algorithm) make some commercial and research tools able to optimize the electricity cost of small water distribution systems (WDS). Still reducing the environmental footprint of these systems and dealing with large and complicated water distribution system is a challenge.

In this study, we aimed to develop a multiobjective optimization …


Reliability-Based Design Optimization Of Concrete Flexural Members Reinforced With Ductile Frp Bars, Bashar Behnam, Christopher D. Eamon Jun 2013

Reliability-Based Design Optimization Of Concrete Flexural Members Reinforced With Ductile Frp Bars, Bashar Behnam, Christopher D. Eamon

Civil and Environmental Engineering Faculty Research Publications

In recent years, ductile hybrid FRP (DHFRP) bars have been developed for use as tensile reinforcement. However, initial material costs regain high, and it is difficult to simultaneously meet strength, stiffness, ductility, and reliability demands. In this study, a reliability-based design optimization (RBDO) is conducted to determine minimum cost DHFRP bar configurations while enforcing essential constraints. Applications for bridge decks and building beams are considered, with 2, 3, and 4-material bars. It was found that optimal bar configuration has little variation for the different applications, and that overall optimized bar cost decreased as the number of bar materials increased.


Reliability-Based Optimization Of Fiber-Reinforced Polymer Composite Bridge Deck Panels, Michel D. Thompson, Christopher D. Eamon, Masoud Rais-Rohani Dec 2006

Reliability-Based Optimization Of Fiber-Reinforced Polymer Composite Bridge Deck Panels, Michel D. Thompson, Christopher D. Eamon, Masoud Rais-Rohani

Civil and Environmental Engineering Faculty Research Publications

A reliability-based optimization (RBO) procedure is developed and applied to minimize the weight of eight fiber-reinforced polymer composite bridge deck panel configurations. The method utilizes interlinked finite element, optimization, and reliability analysis procedures to solve the weight minimization problem with a deterministic strength constraint and two probabilistic deflection constraints. Panels are composed of an upper face plate, lower face plate, and a grid of interior stiffeners. Different panel depths and stiffener layouts are considered. Sensitivity analyses are conducted to identify significant design and random variables. Optimization design variables are panel component ply thicknesses while random variables include load and material …