Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Behavior Of Prestressed Concrete Bridges With Closure Pour Connections And Diaphragms, Gercelino Ramos Oct 2019

Behavior Of Prestressed Concrete Bridges With Closure Pour Connections And Diaphragms, Gercelino Ramos

Masters Theses

Accelerated Bridge Construction (ABC) has gained substantial popularity in new bridge construction and bridge deck replacement because it offers innovative construction techniques that result in time and cost savings when compared to traditional bridge construction practice. One technology commonly implemented in ABC to effectively execute its projects is the use of prefabricated bridge components (precast/prestressed bridge components). Precast/prestressed bridge components are fabricated offsite or near the site and then connected on-site using small volume closure pour connections. Diaphragms are also commonly used to strengthen the connection between certain prefabricated components used in ABC, such as beam elements. Bridges containing closure …


The Promise Of Vr Headsets: Validation Of A Virtual Reality Headset-Based Driving Simulator For Measuring Drivers’ Hazard Anticipation Performance, Ganesh Pai Mangalore Oct 2019

The Promise Of Vr Headsets: Validation Of A Virtual Reality Headset-Based Driving Simulator For Measuring Drivers’ Hazard Anticipation Performance, Ganesh Pai Mangalore

Masters Theses

The objective of the current study is to evaluate the use of virtual reality (VR) headsets to measure driving performance. This is desirable because they are several orders of magnitude less expensive and, if validated, could greatly extend the powers of simulation. Out of several possible measures of performance that could be considered for evaluating VR headsets, the current study specifically examines drivers’ latent hazard anticipation behavior both because it has been linked to crashes and because it has been shown to be significantly poorer in young drivers compared to their experienced counterparts in traditional driving simulators and in open …


Sustainable Travel Incentives Optimization In Multimodal Networks, Hossein Ghafourian Oct 2019

Sustainable Travel Incentives Optimization In Multimodal Networks, Hossein Ghafourian

Masters Theses

Tripod, an integrated bi-level transportation management system, is a smartphone application from the potential user’s point of view which would be instantly accessed prior to performing the trip. Since there are constantly several alternatives for any trip, Tripod considers a series and combination of various parameters, including departure time, mode and route, and rewards for each alternative with a number of redeemable points for goods and services called “Tokens”. The framework responsible for computing the optimized number of tokens awarded to the set of available alternatives in order to minimize the system-wide energy consumption under a constrained Token budget, is …


Modeling The Effect Of New Commuter Bus Service On Demand And The Impact On Ghg Emissions: Application To Greater Boston, Christopher Lyman Jul 2019

Modeling The Effect Of New Commuter Bus Service On Demand And The Impact On Ghg Emissions: Application To Greater Boston, Christopher Lyman

Masters Theses

The transportation sector is considered one of the major contributors to greenhouse gas (GHG) emissions in metropolitan areas, and any efforts to reduce these emissions requires strategic management of multiple transportation modes. This paper presents a method to identify opportunities to reduce GHG emissions by expanding commuter bus services and incentives to shift commuters from private cars to transit. The approach uses a nested multinomial logit model for mode choice in a region that includes driving alone, carpooling, walking, cycling, and using four possible transit modes (ferry, commuter rail, rapid transit and bus) by walk access or driving access. A …


Analysis Of Adhesive Anchorage Systems Under Extreme In-Service Temperature Conditions, Rachel Wang Mar 2019

Analysis Of Adhesive Anchorage Systems Under Extreme In-Service Temperature Conditions, Rachel Wang

Masters Theses

Adhesive anchorage systems have found widespread use in structural applications, including bridge widening, concrete repair and rehabilitation, and barrier retrofitting. Because these applications typically require adhesive anchorage systems to be installed outdoors, the effects of climate conditions and day-to-day temperature fluctuations on adhesive behavior and performance should be considered. The purpose of this thesis is to simulate pullout tests of adhesive anchorage systems for threaded rod and reinforcing bars and to emulate effects under various temperature conditions through the use of finite element analysis. Results from the finite element simulation are then compared to the physical tests conducted at UMass …


Performance Of Concrete Tunnel Systems Subject To Fault Displacement, Michael Morano Mar 2019

Performance Of Concrete Tunnel Systems Subject To Fault Displacement, Michael Morano

Masters Theses

A Finite Element Analysis (FEA) investigation of concrete tunnel systems traversing seismic faults is carried out to determine how to effectively mitigate the stresses induced in the liner when subject to fault displacement. A parametric study of various fault parameters, both in the damage zone and competent rock, is carried out to determine the site conditions which induce the most stress on the tunnel liner system. Results indicate that friction angle, cohesion, and elastic modulus of fault zones have varying effects on the stresses induced on the liner. The width of damage zone and expected displacements are also investigated and …


High Fidelity Modeling Of Cold-Formed Steel Single Lap Shear Screw Fastened Connections, Rita Kalo Mar 2019

High Fidelity Modeling Of Cold-Formed Steel Single Lap Shear Screw Fastened Connections, Rita Kalo

Masters Theses

Cold-formed steel connections are commonly fastened using self-tapping self-drilling screws. The behavior of these connections can differ based on the screw manufacturer or the cold-formed steel product used, both of which have a large selection available for use in industry. Because of their popularity and the many possible variations of these connections, researchers have frequently tested screw connections to characterize their behavior. However, repeatedly conducting this type of experiment is time consuming and expensive. Therefore, the purpose of this work was to create finite element models that can successfully predict the behavior of single lap shear screw connections, a common …