Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Reduced Metal Nanocatalysts For Selective Electrochemical Hydrogenation Of Biomass-Derived 5-(Hydroxymethyl)Furfural To 2, 5-Bis(Hydroxymethyl)Furan In Ambient Conditions, Baleeswaraiah Muchharla, Moumita Dikshit, Ujjwal Pokharel, Ravindranath Garimella, Adetayo Adedeji, Kapil Kumar, Wei Cao, Hani Elsayed-Ali, Kishor Kumar Sadasivuni, Naif Abdullah Al-Dhabi, Sandeep Kumar, Bijandra Kumar Jan 2023

Reduced Metal Nanocatalysts For Selective Electrochemical Hydrogenation Of Biomass-Derived 5-(Hydroxymethyl)Furfural To 2, 5-Bis(Hydroxymethyl)Furan In Ambient Conditions, Baleeswaraiah Muchharla, Moumita Dikshit, Ujjwal Pokharel, Ravindranath Garimella, Adetayo Adedeji, Kapil Kumar, Wei Cao, Hani Elsayed-Ali, Kishor Kumar Sadasivuni, Naif Abdullah Al-Dhabi, Sandeep Kumar, Bijandra Kumar

Chemistry & Biochemistry Faculty Publications

Selective electrochemical hydrogenation (ECH) of biomass-derived unsaturated organic molecules has enormous potential for sustainable chemical production. However, an efficient catalyst is essential to perform an ECH reaction consisting of superior product selectivity and a higher conversion rate. Here, we examined the ECH performance of reduced metal nanostructures i.e., reduced Ag (rAg) and reduced copper (rCu) prepared via electrochemical or thermal oxidation and electrochemical reduction process, respectively. Surface morphological analysis suggests formation of nanocoral and entangled nanowire structure formation for rAg and rCu catalysts. rCu exhibits slight enhancement in ECH reaction performance in comparison to the pristine Cu. However, the rAg …


Ozonized Biochar Filtrate Effects On The Growth Of Pseudomonas Putida And Cyanobacteria Synechococcus Elongatus Pcc 7942, Oumar Sacko, Nancy L. Engle, Timothy J. Tschaplinski, Sandeep Kumar, James Weifu Lee Jan 2022

Ozonized Biochar Filtrate Effects On The Growth Of Pseudomonas Putida And Cyanobacteria Synechococcus Elongatus Pcc 7942, Oumar Sacko, Nancy L. Engle, Timothy J. Tschaplinski, Sandeep Kumar, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

Background

Biochar ozonization was previously shown to dramatically increase its cation exchange capacity, thus improving its nutrient retention capacity. The potential soil application of ozonized biochar warrants the need for a toxicity study that investigates its effects on microorganisms.

Results

In the study presented here, we found that the filtrates collected from ozonized pine 400 biochar and ozonized rogue biochar did not have any inhibitory effects on the soil environmental bacteria Pseudomonas putida, even at high dissolved organic carbon (DOC) concentrations of 300 ppm. However, the growth of Synechococcus elongatus PCC 7942 was inhibited by the ozonized biochar filtrates at …


Characterization Of Biochars Produced From Peanut Hulls And Pine Wood With Different Pyrolysis Conditions, James W. Lee, Bob Hawkins, Michelle K. Kidder, Barbara R. Evans, A. C. Buchanan, Danny Day Jan 2016

Characterization Of Biochars Produced From Peanut Hulls And Pine Wood With Different Pyrolysis Conditions, James W. Lee, Bob Hawkins, Michelle K. Kidder, Barbara R. Evans, A. C. Buchanan, Danny Day

Chemistry & Biochemistry Faculty Publications

Background

Application of modern biomass pyrolysis methods for production of biofuels and biochar is potentially a significant approach to enable global carbon capture and sequestration. To realize this potential, it is essential to develop methods that produce biochar with the characteristics needed for effective soil amendment.

Methods

Biochar materials were produced from peanut hulls and pine wood with different pyrolysis conditions, then characterized by cation exchange (CEC) capacity assays, nitrogen adsorption–desorption isotherm measurements, micro/nanostructural imaging, infrared spectra and elemental analyses.

Results

Under a standard assay condition of pH 8.5, the CEC values of the peanut hull-derived biochar materials, ranging from …


Effluent Organic Nitrogen (Eon): Bioavailability And Photochemical And Salinity-Mediated Release, Deborah A. Bronk, Quinn N. Roberts, Marta P. Sanderson, Elizabeth A. Canuel, Patrick G. Hatcher, Rajaa Mesfioui, Katherine C. Filippino, Margaret R. Mulholland, Nancy G. Love Jan 2010

Effluent Organic Nitrogen (Eon): Bioavailability And Photochemical And Salinity-Mediated Release, Deborah A. Bronk, Quinn N. Roberts, Marta P. Sanderson, Elizabeth A. Canuel, Patrick G. Hatcher, Rajaa Mesfioui, Katherine C. Filippino, Margaret R. Mulholland, Nancy G. Love

Chemistry & Biochemistry Faculty Publications

The goal of this study was to investigate three potential ways that the soluble organic nitrogen (N) fraction of wastewater treatment plant (WWTP) effluents, termed effluent organic N (EON), could contribute to coastal eutrophication - direct biological removal, photochemical release of labile compounds, and salinity-mediated release of ammonium (NH4+). Effluents from two WWTPs were used in the experiments. For the bioassays, EON was added to water from four salinities (∼0 to 30) collected from the James River (VA) in August 2008, and then concentrations of N and phosphorus compounds were measured periodically over 48 h. Bioassay results, based …