Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Civil Engineering

Civil and Environmental Engineering Faculty Research and Publications

Pyrolysis

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Engineering

The State Of Technologies And Research For Energy Recovery From Municipal Wastewater Sludge And Biosolids, Zhongzhe Liu, Brooke Mayer, Kaushik Venkiteshwaran, Saba Seyedi, Arun S.K. Raju, Daniel Zitomer, Patrick J. Mcnamara Apr 2020

The State Of Technologies And Research For Energy Recovery From Municipal Wastewater Sludge And Biosolids, Zhongzhe Liu, Brooke Mayer, Kaushik Venkiteshwaran, Saba Seyedi, Arun S.K. Raju, Daniel Zitomer, Patrick J. Mcnamara

Civil and Environmental Engineering Faculty Research and Publications

Wastewater resource recovery facilities produce wastewater solids that offer potential for energy recovery. This opinion article provides a perspective on state-of-the-art technologies to recover energy from sludge (unstabilized wastewater residual solids) and biosolids (stabilized wastewater solids meeting criteria for application on land). The production of biodiesel fuel is an emerging technology for energy recovery from sludge, whereas advancements in pretreatment technologies have improved energy recovery from anaerobic digestion of sludge. Incineration is an established technology to recover energy from sludge or biosolids. Gasification, and to a greater extent, pyrolysis are emerging technologies well-suited for energy recovery from biosolids. While gasification …


Ion Exchange For Nutrient Recovery Coupled With Biosolids-Derived Biochar Pretreatment To Remove Micropollutants, Yiran Tong, Lee K. Kimbell, Anna Avila, Patrick J. Mcnamara, Brooke K. Mayer Nov 2018

Ion Exchange For Nutrient Recovery Coupled With Biosolids-Derived Biochar Pretreatment To Remove Micropollutants, Yiran Tong, Lee K. Kimbell, Anna Avila, Patrick J. Mcnamara, Brooke K. Mayer

Civil and Environmental Engineering Faculty Research and Publications

Wastewater, especially anaerobic treatment effluent, contains high ammonia nitrogen (NH4-N) and inorganic orthophosphate (PO4-P), which necessitate additional treatment to meet stringent discharge regulations. Ion exchange regeneration is a process that can be adopted for not only removing but also recovering nutrients. However, recovering nutrients by ion exchange from nutrient-rich effluents that also contain micropollutants (which typically pass through anaerobic treatment as well) may result in subsequent problems, since micropollutants could end up in ion exchange effluent, regenerant, or recovered fertilizer products. Micropollutant removal by a nonselective adsorbent, such as biosolids-derived biochar, before nutrient recovery processes would …


Characteristics And Applications Of Biochars Derived From Wastewater Solids, Zhongzhe Liu, Simcha L. Singer, Yiran Tong, Lee Kimball, Erik Anderson, Matthew Hughes, Daniel Zitomer, Patrick J. Mcnamara Jul 2018

Characteristics And Applications Of Biochars Derived From Wastewater Solids, Zhongzhe Liu, Simcha L. Singer, Yiran Tong, Lee Kimball, Erik Anderson, Matthew Hughes, Daniel Zitomer, Patrick J. Mcnamara

Civil and Environmental Engineering Faculty Research and Publications

Pyrolysis is a thermochemical decomposition process that can be used to generate pyrolysis gas (py-gas), bio-oil, and biochar as well as energy from biomass. Biomass from agricultural waste and other plant-based materials has been the predominant pyrolysis research focus. Water resource recovery facilities also produce biomass, referred to as wastewater solids, that could be a viable pyrolysis feedstock. Water resource recovery facilities are central collection and production sites for wastewater solids. While the utilization of biochar from a variety of biomass types has been extensively studied, the utilization of wastewater biochars has not been reviewed in detail. This review compares …


Biosolids-Derived Biochar For Triclosan Removal From Wastewater, Lee K. Kimbell, Yiran Tong, Brooke K. Mayer, Patrick J. Mcnamara Jun 2018

Biosolids-Derived Biochar For Triclosan Removal From Wastewater, Lee K. Kimbell, Yiran Tong, Brooke K. Mayer, Patrick J. Mcnamara

Civil and Environmental Engineering Faculty Research and Publications

Micropollutants, including antibiotics, hormones, pharmaceuticals, and personal care products, are discharged into the environment with liquid and solid effluent streams from water resource recovery facilities (WRRFs). The objective of this research was to determine whether biosolids-derived biochar (BS-biochar) could be used as a sorbent in continuous flow-through columns to remove micropollutants as a polishing step for wastewater treatment. Triclosan (TCS) was selected as a representative micropollutant due to frequent detection in liquid effluents, residual biosolids, and surface waters. Bench-scale column experiments were conducted to determine the effect of flow rate and competition due to the presence of other organic micropollutants …


Emerging Investigators Series: Pyrolysis Removes Common Microconstituents Triclocarban, Triclosan, And Nonylphenol From Biosolids, J. J. Ross, Daniel Zitomer, T. R. Miller, C. A. Weirich, Patrick J. Mcnamara Jan 2016

Emerging Investigators Series: Pyrolysis Removes Common Microconstituents Triclocarban, Triclosan, And Nonylphenol From Biosolids, J. J. Ross, Daniel Zitomer, T. R. Miller, C. A. Weirich, Patrick J. Mcnamara

Civil and Environmental Engineering Faculty Research and Publications

Reusing biosolids is vital for the sustainability of wastewater management. Pyrolysis is an anoxic thermal degradation process that can be used to convert biosolids into energy rich py-gas and py-oil, and a beneficial soil amendment, biochar. Batch biosolids pyrolysis (60 minutes) revealed that triclocarban and triclosan were removed (to below quantification limit) at 200 °C and 300 °C, respectively. Substantial removal (>90%) of nonylphenol was achieved at 300 °C as well, but 600 °C was required to remove nonylphenol to below the quantification limit. At 500 °C, the pyrolysis reaction time to remove >90% of microconstituents was less than …


Biochar From Pyrolysis Of Biosolids For Nutrient Adsorption And Turfgrass Cultivation, Daniel Elliott Carey, Patrick J. Mcnamara, Daniel Zitomer Dec 2015

Biochar From Pyrolysis Of Biosolids For Nutrient Adsorption And Turfgrass Cultivation, Daniel Elliott Carey, Patrick J. Mcnamara, Daniel Zitomer

Civil and Environmental Engineering Faculty Research and Publications

At water resource recovery facilities, nutrient removal is often required and energy recovery is an ever-increasing goal. Pyrolysis may be a sustainable process for handling wastewater biosolids because energy can be recovered in the py-gas and py-oil. Additionally, the biochar produced has value as a soil conditioner. The objective of this work was to determine if biochar could be used to adsorb ammonia from biosolids filtrate and subsequently be applied as a soil conditioner to improve grass growth. The maximum carrying capacity of base modified biochar for NH3−N was 5.3 mg/g. Biochar containing adsorbed ammonium and potassium was …