Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Civil Engineering

Missouri University of Science and Technology

Series

2013

Droplet mobilization

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Dynamics And Dislodgment From Pore Constrictions Of A Trapped Nonwetting Droplet Stimulated By Seismic Waves, Wen Deng, M. Bayani Cardenas Jul 2013

Dynamics And Dislodgment From Pore Constrictions Of A Trapped Nonwetting Droplet Stimulated By Seismic Waves, Wen Deng, M. Bayani Cardenas

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Seismic waves affect fluid flow and transport processes in porous media. Therefore, quantitative understanding of the role of seismic waves in subsurface hydrodynamics is important for the development of practical applications and prediction of natural phenomena. We present a theoretical fluid dynamics model to describe how low-frequency elastic waves mobilize isolated droplets trapped in pores by capillary resistance. The ability of the theoretical model to predict the critical mobilization amplitudes (Ac) and the displacement dynamics of the nonwetting droplet are validated against computational fluid dynamics (CFD) simulations. Our theory has the advantage of rapid calculation of Ac …