Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr Nov 2021

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr

Nanoscience and Microsystems ETDs

Through-bond and through-space interactions between chromophores are shown to have wide-ranging effects on photophysical outcomes upon light absorption in organic molecules. In collapsed poly(3-hexylthiophene), through-space coupling creates hybrid chromophores that act as energy sinks for nearby excitons and favorable sites for molecular oxygen to dock. Upon excitation with visible light the highly-coupled chromophores react with the docked oxygen and subsequently do not quench nearby excitons as efficiently. In tetramer arrays of perylene diimide chromophores the central moiety through-bond connectivity is synthesized in two variants which exhibit vastly different single-molecule blinking behavior and theoretically-predicted electronic transition character. In the more-connected tetramer …


Understanding The Role Of Atom Trapping In The Evolution Of Hydrocarbon Transformation Catalyst Morphology, Griffin Canning Dec 2020

Understanding The Role Of Atom Trapping In The Evolution Of Hydrocarbon Transformation Catalyst Morphology, Griffin Canning

Chemistry and Chemical Biology ETDs

Converting alkanes to other, more chemically and economically valuable molecules requires catalysts that can survive elevated temperatures and highly reducing environments. These environments can cause many metal-nanoparticle based catalysts to sinter rapidly, causing a loss of activity. They must also tolerate the coke formation, as well, since coke can restrict access to active sites by gas phase molecules, thus lowering catalytic activity. While there are routes to improve both the sinter and coke resistance of catalysts, an alternative strategy is to develop a protocol for regenerating the activity of the catalyst in question when coke formation or sintering becomes problematic. …


Atom Trapping And Its Role On The Nucleation & Growth Of Platinum Nanoparticles, Deepak Kunwar Nov 2020

Atom Trapping And Its Role On The Nucleation & Growth Of Platinum Nanoparticles, Deepak Kunwar

Chemistry and Chemical Biology ETDs

Diesel oxidation catalysts deactivate due to Pt sintering, a major problem in automotive industries. To make sure they operate effectively throughout the lifetime of the vehicle, automotive industries are putting an excessive amount of Pt. There is a need to develop a catalyst that serves long term performance with minimal use of Pt. Jones et al.1 demonstrated that ceria traps Pt atoms. His work generated some logical and valid questions such as what is the mechanism for the formation of anomalously large Pt particles? What is the upper limit of Pt metal loading in the form of single atoms …


Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao Nov 2020

Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao

Nanoscience and Microsystems ETDs

Classical potentials that are capable of describing charge transfer and charge polarization in complex systems are of central importance for classical atomistic simulation of biomolecules and materials. Current potentials—regardless of the system—do not generalize well, and, with the exception of highly-specialized empirical potentials tuned for specific systems, cannot describe chemical bond formation and breaking. The charge-transfer embedded atom method (CT-EAM), a formal, DFT-based extension to the original EAM for metals, has been developed to address these issues by modeling charge distortion and charge transfer in interacting systems using pseudoatom building blocks instead of the electron densities of isolated atoms. CT-EAM …


An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel Jan 2019

An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel

Nuclear Engineering ETDs

Renewed interest in molten salt reactor technology has brought to light the need for a better understanding of FLiBe corrosion. To this end a flowing FLiBe corrosion test loop was designed to test the flow effects of FLiBe corrosion. The loop consists of a pump, melt tank, and stainless-steel tubing assembly that heats the molten salt to high temperatures and circulates it over test specimens. The experiment has been constructed and has completed initial shakedown testing.

To support the flowing FLiBe experiment, a numerical corrosion model that couples FLiBe electrochemistry, solid metal diffusion, and mass transport was implemented. The model …


From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson Apr 2018

From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson

Nanoscience and Microsystems ETDs

Semiconducting nanocrystals, also known as quantum dots (QDs), that emit light with near-unity quantum yield and are extremely photostable are attractive options as down-conversion and direct electricity-to-light materials for a variety of applications including solid-state lighting, display technologies, bio-imaging and optical tracking. Standard QDs with a core/thin shell structure display fluorescence intermittency (blinking) and photobleaching when exposed to prolonged room temperature excitation for single dot measurements, as well as significant reabsorption and energy transfer when densely packed into polymers or at high solution concentrations.

We have developed thick shell “giant” QDs (gQDs), ultra-stable photon sources both at the ensemble and …


Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki Nov 2017

Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki

Mechanical Engineering ETDs

Carbon nanotubes (CNTs) are a promising candidate for next generation of electrical wirings and electromagnetic interference (EMI) shielding materials due to their exceptional mechanical and electrical properties. Wires and coatings from ultralong nanotubes that are highly crystalline, well-aligned and densely packed can achieve this goal. High-performance CNT conductors will be relatively lightweight and resistant to harsh conditions and therefore can potentially replace current conductors in many industries including aerospace, automotive, gas and oil.

This thesis investigates a new manufacturing approach, based on conventional solution coating and wire drawing methods, to fabricate high conductivity wires and coatings from ultra-long carbon nanotubes. …


Hydrogeochemical Investigation Of Recharge Pathways To Intermediate And Regional Groundwater In Cañon De Valle And Technical Area 16, Los Alamos National Laboratory, Brendan W. Brady Nov 2017

Hydrogeochemical Investigation Of Recharge Pathways To Intermediate And Regional Groundwater In Cañon De Valle And Technical Area 16, Los Alamos National Laboratory, Brendan W. Brady

Civil Engineering ETDs

In aquifers consisting of fractured or porous igneous rocks, as well as conglomerate and sandstone products of volcanic formations, silicate minerals actively dissolve and precipitate (Eby, 2004; Eriksson, 1985; Drever, 1982). Dissolution of hydrated volcanic glass is also known to influence the character of groundwater to which it is exposed (White et al., 1980). Hydrochemical evolution, within saturated zones of volcanic formations, is modeled here as a means to resolve the sources feeding a perched groundwater zone. By observation of solute mass balances in groundwater, together with rock chemistry, this study characterizes the chemical weathering processes active along recharge pathways …


Comprehensive Silica Removal With Ferric Compounds For Industrial Wastewater Reuse, Ehren D. Baca Jun 2017

Comprehensive Silica Removal With Ferric Compounds For Industrial Wastewater Reuse, Ehren D. Baca

Civil Engineering ETDs

Cooling towers, integrated circuit (IC) manufacture and reverse osmosis (RO) generate copious amounts of wastewater high in colloidal and reactive silica inhibiting on-site or synergistic reuse. Silica present in cooling water can reach solubility limits via evaporation and form impervious scale on heat transfer surfaces that decreases efficiency. When water is treated by RO operating at high rejection, silica forms difficult-to-remove scale on the membrane feed side in the form of glassy patches and communities of aggregate particles, inhibiting aspirations for zero liquid discharge. Current methods for silica scale mitigation include abundant dosing with chemical antiscalents or complex operating schemes. …


Development Of In Vivo Systems For Detecting And Studying Ribosome Inhibition By Small Molecules, Shijie Huang Nov 2016

Development Of In Vivo Systems For Detecting And Studying Ribosome Inhibition By Small Molecules, Shijie Huang

Chemistry and Chemical Biology ETDs

The ribosome is the quintessential antibacterial drug target, with many structurally and mechanistically distinct classes of antibacterial agents acting by inhibiting ribosome function. Detecting and quantifying ribosome inhibition by small molecules and investigating their binding modes and mechanisms of action are critical to antibacterial drug discovery and development efforts. To develop a ribosome inhibition assay that is operationally simple, yet provides direct information on the drug target and the mechanism of action, we have developed engineered E. coli strains harboring an orthogonal ribosome controlled green fluorescent protein reporter that produce fluorescent signal when the O-ribosome is inhibited. As a proof …


Molecular Tetrapods For Optoelectronic Applications, Jianzhong Yang Nov 2016

Molecular Tetrapods For Optoelectronic Applications, Jianzhong Yang

Chemistry and Chemical Biology ETDs

In this dissertation, several molecular tetrapods were synthesized for optoelectronic applications. In the first two sections, two tetrapodal breakwater-like small molecules: SO and SFBTD were synthesized and characterized. Absorption, X-ray scattering and differential scanning calorimetry experiments indicate crystalline nature of these compounds but slow crystallization kinetics. Solar cells employing SO or SFBTD and phenyl-C61-butyric acid methyl ester (PCBM) were fabricated and evaluated. Relatively low performance was obtained mainly due to the lack of appropriate phase separation, which was caused by molecularly mixed blends with PCBM. The molecularly mixed blends is the result of slow crystallization …