Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Electrochemical And Surface Compositional Studies On Uranium Dioxide, Mayuri Razdan Dec 2013

Electrochemical And Surface Compositional Studies On Uranium Dioxide, Mayuri Razdan

Electronic Thesis and Dissertation Repository

This thesis describes electrochemical and surface compositional studies performed on a number of simulated nuclear fuel (SIMFUEL) materials under conditions relevant to permanent disposal of spent nuclear fuel in a geologic repository. This is important since a number of critical issues have been identified in the event of waste container failure. The research performed was mainly focused in three areas: (i) the influence of low pH on the surface chemistry of UO2, since acidity could develop within corrosion product deposits and flaws in the fuel; (ii) the combined influence of dissolved H2 and H2O2 …


Degradation Kinetics And Functional Design Of Linear Self-Immolative Polymers, Ryan A. Mcbride Jun 2013

Degradation Kinetics And Functional Design Of Linear Self-Immolative Polymers, Ryan A. Mcbride

Electronic Thesis and Dissertation Repository

Linear self-immolative polymers display a potential to address many of the limitations in the control over the degradation process in traditional biodegradable polymers. These materials are unique relative to most degradable 
polymers, in that they undergo end-to-end depolymerization in
 response to the cleavage of a stabilizing end-capping agent. Although one of their cited 
attributes is a dependence of their degradation time on chain length, no conclusive study has been conducted to demonstrate and study this 
effect. Using a previously reported linear self-immolative backbone derived from alternating 4-hydroxybenzyl alcohol and N,N’-dimethylethylenediamine spacers, this work offers the first conclusive study demonstrating …


Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec Jun 2013

Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec

Electronic Thesis and Dissertation Repository

Biomaterials can be used in a wide variety of medical applications owing to their breadth of characteristics that can be imparted by varying their chemical structures. Butyl rubber (IIR), which is a copolymer of isobutylene (IB) and small percentages of isoprene (IP), is particularly attractive as a biomaterial because of its elastomeric mechanical properties, biocompatibility, impermeability and high damping characteristics. IIR is typically vulcanized through chemical-based crosslinking mechanisms. However, these methods are not acceptable for biological applications. This thesis focuses on the synthesis of IIR-polyester graft copolymers by grafting biodegradable and biocompatible polyesters including poly(caprolactone) (PCL) and poly(d,l-lactide) (PDLLA) to …


Carbon Nitride And Conjugated Polymer Composite Materials, Josh Byers Mar 2013

Carbon Nitride And Conjugated Polymer Composite Materials, Josh Byers

Electronic Thesis and Dissertation Repository

The semiconductor and photovoltaic properties of carbon nitride (CNx) thin films prepared using a reactive magnetron sputtering technique were investigated both individually and as composites with the organic conjugated polymers polybithiophene (PBT) and poly(3-hextlthiophene) (P3HT). At low nitrogen content, the film structure was dominated by graphitic sp2 percolation networks, whereas at higher nitrogen contents CNx films started to demonstrate semiconductor properties, as evidenced by the occurrence of photoconductivity and the development of a space charge region. When CNx was deposited onto a PBT substrate, it was found to function as an acceptor material improving the photocurrent generation both in …


Ph Responsive Hydrogen Bonding Motif To Improve The Sensitivity Of Tumor Imaging, Fatimah Mohammed Algarni Jan 2013

Ph Responsive Hydrogen Bonding Motif To Improve The Sensitivity Of Tumor Imaging, Fatimah Mohammed Algarni

Electronic Thesis and Dissertation Repository

Magnetic resonance imaging (MRI) is a powerful non-invasive medical diagnostic technique. Superparamagnetic iron oxide nanoparticles (SPIO) are effective contrast agents and provide high sensitivity contrast in MRI. Recent research has demonstrated that nanoparticle clusters exhibit significantly higher relaxivity than individual nanoparticles.

In order to increase the sensitivity of tumor imaging, supramolecular chemistry was introduced to this field and a novel conjugation method was developed using click chemistry between azide functionalized nanoparticles and pH-sensitive hydrogen bonding building blocks. This pH-sensitive hydrogen bonded complex was synthesized to cluster nanoparticles under mildly acidic biological conditions.

Due to the unexpected X-ray crystal structure of …